[1]刘纪建,于建芳*,王喜明,等.樟子松木材干燥过程传热传质多尺度单元表征模型[J].林业工程学报,2018,3(01):26-31.
 LIU Jijian,YU Jianfang*,WANG Ximing,et al.Heat and mass transfer multi-scale unit characterization model in the drying process of Pinus sylvestris[J].Journal of Forestry Engineering,2018,3(01):26-31.
点击复制

樟子松木材干燥过程传热传质多尺度单元表征模型()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
3
期数:
2018年01期
页码:
26-31
栏目:
木材科学与技术
出版日期:
2018-01-15

文章信息/Info

Title:
Heat and mass transfer multi-scale unit characterization model in the drying process of Pinus sylvestris
文章编号:
2096-1359(2018)01-0026-06
作者:
刘纪建1于建芳2*王喜明2李亚玲2
1.河北省塞罕坝机械林场,河北 承德 067000;
2.内蒙古农业大学材料科学与艺术设计学院,呼和浩特 010018
Author(s):
LIU Jijian1 YU Jianfang2* WANG Ximing2 LI Yaling2
1.Hebei Saihanba Machinery Forest Farm, Chengde 067000, Hebei, China;
2.College of Material Science and Art Design,Inner Mongolia Agricultural University, Hohhot 010018, China
关键词:
木材干燥 传热传质 数学模型 多尺度单元表征 容积密度法
Keywords:
wood drying heat and mass transfer mathematical model multiple-scale unit characterization volume density method
分类号:
S781.71; TB131
文献标志码:
A
摘要:
了解木材干燥过程中的水分迁移和热量传递规律有助于提高木材的干燥质量,改善干燥工艺,节约能源。以樟子松(Pinus sylvestris)为材料,建立能够较准确模拟木材干燥过程中含水率和温度分布变化的多尺度单元表征模型,模型由宏观尺度上3个耦合方程——2个水分扩散方程和1个热量平衡方程,以及微观尺度上的单个细胞水分迁移的平衡方程组成。解析模型的过程为:分析初始条件和边界条件、有限元网格的生成、方程离散化、查找相应物性参数、MATLAB软件编程求解。最后通过试验分析验证了建立的多尺度模型的准确性:在80℃进行切片称质量法和容积密度法试验值和模拟值的比较,2种方法的试验值与模拟值之间均没有显著性差异(P>0.05),表明2种方法都可以反映出模拟值的准确性; 切片称质量法P<0.5,容积密度法P>0.5,表明容积密度法与模型结果更加吻合。用容积密度法进行40,60和80℃下试材平均含水率的变化试验,比较试验结果和模拟值,两者吻合较好,证明多尺度单元表征模型可以反映出干燥的传热传质行为。
Abstract:
Understanding the theory of heat and mass transfer in wood drying is conducive to wood drying process improvement and energy saving. Pinus sylvestr was used as experimental material and a multiscale mathematical model was construct, which can accurately simulate the temperature and moisture content changes during the wood drying process. The model was made up of three coupled equations: two water diffusion equations and one energy balance equation in macroscopic level, and water transfer balance in single cell equation in microscopic level. The process of parsing the model was as follows: analyzing of the initial and boundary conditions, forming of the finite element mesh, the discretization of the equation, searching the corresponding parameters, and solving the programme by MATLAB software. Finally, the accuracy of the established multi-scale model was verified by the experimental analysis. The results showed that:(1)Comparing the experimental value and analog value by slice weighing method and density volumetric method at 80℃, the P value of slice weighing method was lower than 0.5, while the P value of density volumetric method was higher than 0.5, proving that the density volumetric method was more coincident with model method than slice weighing method was;(2)The average moisture content of sawn timber change experiment was performed by the density volumetric method at 40℃, 60℃ and 80℃, experiment and model results were congruence. The multi-scale model could reflect the heat and mass transfer behavior at the wood drying process. Establishing the heat and mass transfer mathematical model from different scales can accurately reflect the moisture content changes in the wood and spatial distribution.

参考文献/References:

[1] 成俊卿. 木材学[M]. 北京:中国林业出版社, 1985.
[2] KOLLMANN D I F. Technologie des Holzes und der Holzwerkstoffe[M]. Springer:Berlin Heidelberg, 1955.
[3] 周正, 孙丽萍. 木材干燥过程含水率和温度变化的数学模型研究[J]. 森林工程, 2014, 30(1):49-51.
ZHOU Z, SUN L P. A computational model of wood moisture content and temperature variation during drying process[J]. Forest Engineering, 2014, 30(1):49-51.
[4] EITELBERGER J, HOFSTETTER K. Prediction of transport properties of wood below the fiber saturation pointga multiscale homogenization approach and its experimental validation. Part I:thermal conductivity[J]. Composites Science and Technology, 2011, 71(2):134-144.
[5] HAQUE M N. Analysis of heat and mass transfer during high-temperature drying of Pinus radiata[J]. Drying Technology, 2007, 25(2):379-389.
[6] DE VRIES D A. The theory of heat and moisture transfer in porous media revisited[J]. International Journal of Heat and Mass Transfer, 1987, 30(7):1343-1350.
[7] EITELBERGER J, HOFSTETTER K, DVINSKIKH S V. A multi-scale approach for simulation of transient moisture transport processes in wood below the fiber saturation point[J]. Composites Science and Technology, 2011, 71(15):1727-1738.
[8] EITELBERGER J, SVENSSON S, DE BORST K. Theory of transport processes in wood below the fiber saturation point. Physical background on the microscale and its macroscopic description[J]. Holzforschung, 2011, 65(3):337-342.
[9] 冯迪, 陈尚星, 陈昊海. 土体的裂隙描述和表征单元体积研究[J]. 福建建筑, 2012(4):102-104.
FENG D, CHEN S X, CHEN H H. Research on cracks description and representative elementary volume of soil[J]. Fujian Architecture and Construction, 2012(4):102-104.
[10] 于亚婷, 杜平安, 王振伟. 有限元法的应用现状研究[J]. 机械设计, 2005, 22(3):6-9.
YU Y T, DU P A, WANG Z W. Research on the current application status of finite element method[J]. Journal of Machine Design, 2005, 22(3):6-9.
[11] 邬飞宇, 李丽丽, 王喜明. 樟子松材干燥密实炭化一体化技术的优化[J]. 东北林业大学学报, 2015, 43(4):82-86.
WU F Y, LI L L,WANG X M. Trinity technology optimization of drying, densifying and charring of Pinus sylvestris[J]. Journal of Northeast Forestry University, 2015, 43(4):82-86.
[12] 费本华, 赵勇, 侯祝强, 等. 干燥过程中木材内部孔隙度变化的初步研究[J]. 北京林业大学学报, 2005,27(增刊):1-4.
FEI B H, ZHAO Y, HOU Z Q, et al. Changes of wood interior porosity during the drying process[J]. Journal of Beijing Forestry University, 2005,27(Supp.):1-4.
[13] 刘源松, 张明辉, 关明杰. 木材吸湿水分变化的核磁共振分析[J]. 林业工程学报, 2016, 1(2):49-53.
LIU Y S, ZHANG M H, GUAN M J. A NMR study on wood moisture sorption[J]. Journal of Forestry Engineering,2016, 1(2):49-53.
[14] 程曦依, 李贤军, 贺霞,等. 过热蒸汽温度对马尾松干燥速率和力学性能的影响[J]. 林业工程学报, 2016, 1(6):51-57.
CHENG X Y, LI X J, HE X, et al. Effects of the superheated steam temperature on the drying rate and mechanical properties of masson pine wood[J]. Journal of Forestry Engineering,2016, 1(6):51-57.
[15] 刘纪建, 于建芳, 王喜明. 基于有限差分法模拟木材吸湿性的研究[J]. 木材加工机械, 2016, 27(3):34-37.
LIU J J, YU J F, WANG X M. Modeling the moisture adsorption of wood based on FEM[J].Wood Processing Machinery, 2016, 27(3):34-37.

相似文献/References:

[1]甘英俊,周宏平.木材干燥窑智能化控制系统的设计[J].林业工程学报,2003,17(06):43.
[2]汪佑宏,顾炼百,王传贵,等.木材热压干燥及表面强化研究综述[J].林业工程学报,2005,19(03):13.
[3]李宏达,王志友,Смердов Олег Владимирович,等.低压力高电压放电法干燥木材技术[J].林业工程学报,2008,22(05):81.
[4]吕欢,王贵富,何正斌,等.光电-光热联合木材太阳能预干燥设备性能探析[J].林业工程学报,2016,1(03):27.
 LYU Huan,WANG Guifu,HE Zhengbin,et al.Performance study on wood solar dryer combined with solar photovoltaic-thermal generator[J].Journal of Forestry Engineering,2016,1(01):27.

备注/Memo

备注/Memo:
收稿日期:2017-04-30 修回日期:2017-07-12
基金项目:科技部国际合作项目(2013DFA32000); 内蒙古自治区自然科学基金(2015MS0344); 内蒙古自治区高等学校科学研究项目(NJZY11054); 博士科研启动基金(BJ10-25)。
作者简介:刘纪建,男,助理工程师,研究方向为木材干燥理论与技术。通信作者:于建芳,女,副教授。E-mail:yjf_112@163.com
更新日期/Last Update: 2018-01-10