[1]涂春炘,赵伟刚,戴达松,等.锯末粉真空绝热板的制备及性能[J].林业工程学报,2018,3(01):32-37.[doi:10.13360/j.issn.2096-1359.2018.01.006]
 TU Chunxin,ZHAO Weigang,DAI Dasong,et al.Preparation and properties of vacuum insulation panels from sawdust[J].Journal of Forestry Engineering,2018,3(01):32-37.[doi:10.13360/j.issn.2096-1359.2018.01.006]
点击复制

锯末粉真空绝热板的制备及性能()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
3
期数:
2018年01期
页码:
32-37
栏目:
木材科学与技术
出版日期:
2018-01-15

文章信息/Info

Title:
Preparation and properties of vacuum insulation panels from sawdust
文章编号:
2096-1359(2018)01-0032-06
作者:
涂春炘1赵伟刚1戴达松1范毜仔12*
1.福建农林大学材料工程学院,福州 350108;
2.英国布鲁内尔大学工程设计学院土木工程系,伦敦UB8 3PH
Author(s):
TU Chunxin1 ZHAO Weigang1 DAI Dasong1 FAN Mizi12*
1.School of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China;
2.Civil Engineering Department, School of Engineering and Design, Brunel University, London UB8 3PH, UK
关键词:
木材锯末粉 真空绝热板 导热系数 静曲强度
Keywords:
wood sawdust powder vacuum insulation panels thermal conductivity modulus of rupture
分类号:
TB332
DOI:
10.13360/j.issn.2096-1359.2018.01.006
文献标志码:
A
摘要:
当前,真空绝热板主要采用成本较高的气相二氧化硅或不可再生的玻璃纤维作为芯材,为减少真空绝热板的成本,提高木材锯末粉的高值化利用,以木材锯末粉为原料、环氧树脂为胶黏剂制备真空绝热板,研究了木材锯末粉粒度(30~60,≥60~100和≥100~300目)和不同芯材密度(0.2,0.3,0.4和0.5 g/cm3)对真空绝热板性能的影响。试验结果表明,当密度为0.3 g/cm3时,随着锯末粉目数的增加,芯材静曲强度仅增加5%,因此,锯末粉目数对芯材静曲强度影响不明显。当锯末粉粒度为≥100~300目时,随着芯材密度的增加,芯材静曲强度增幅可达132%,因此,芯材密度对静曲强度影响明显。在满足自身成型的基础上,密度为0.2 g/cm3的芯材静曲强度可满足欧洲建筑保温材料的要求。当木材锯末粉目数小于300目且密度为0.3 g/cm3时,随着木材锯末粉目数的增加,芯材的平均孔径减小,芯材孔隙率增加,导热系数减小; 当木材锯末粉粒度为≥100~300目时,随着芯材密度的增加,芯材的平均孔径减小,芯材孔隙率减小,导热系数增大; 当木材锯末粉粒度为≥100~300目、芯材密度为0.2 g/cm3时,木材锯末粉真空绝热板的导热系数最低,仅为0.010 5 W/(m·K)。
Abstract:
Vacuum insulation panels(VIP)is regarded as one of the most promising solutions for high performance thermal insulation, and the insulation performance of VIP mainly depends on the core material. At present, the VIP mostly uses the high cost of fumed silica or non-renewable glass fiber as the core material. In order to reduce the cost of VIP and increase the utilization of wood sawdust, the VIP was prepared with wood sawdust as raw material and epoxy resin as adhesive. The influence of particle size(30-60 mesh, ≥60-100 mesh and ≥100-300 mesh)of wood sawdust and the density of core material(0.2 g/cm3, 0.3 g/cm3, 0.4 g/cm3 and 0.5 g/cm3)on the thermal insulation performance of wood sawdust VIP was examined. The results showed that, when the density of the core material was 0.3 g/cm3, with the increase of the particle size of core material, the modulus of rupture(MOR)of the core material increased by only 5%, demonstrating that the particle size of the core material had no obvious effect on the MOR. When the particle size of the core material was ≥100-300 mesh, with the increase of the density of the core material, the MOR of the core material increased by 132%, indicating that the density of the core material had an obvious effect on the MOR. When the density of the core material was 0.2 g/cm3, the MOR of the core material could meet the requirements of the European standard for the insulation materials in the construction application. When the particle size was lower than 300 mesh and the density of the core material was 0.3 g/cm3, with the increase of wood sawdust powder mesh, the average pore size of the core material decreased, the porosity of the core material increased, and the thermal conductivity decreased. When the particle size of wood sawdust was ≥100-300 mesh, with the increase of the core material density, the average pore size and the porosity of the core material decreased, and the thermal conductivity increased. When the particle size of wood powder was ≥100-300 mesh and the core material density was 0.2 g/cm3, the thermal conductivity of wood sawdust VIP reached the lowest value of 0.010 5 W/(m·K).

参考文献/References:

[1] LI C D,CHEN Z F,WU W P,et al. Core materials of vacuum insulation panels:a review and beyond[J]. Applied Mechanics and Materials,2012,174-177:1437-1440.
[2] SCHLANBUSCH R D,JELLE B P,SANDBERG L I C,et al. Integration of life cycle assessment in the design of hollow silica nanospheres for thermal insulation applications[J]. Building and Environment, 2014,80:115-124.
[3] RETTELBACH T,SÄUBERLICH J,KORDER S,et al. Thermal conductivity of silica aerogel powders at temperatures from 10 to 275 K[J]. Journal of Non-Crystalline Solids, 1995,186:278-284.
[4] 杜磊,唐强,林修洲,等. SiO2纳米孔超级绝热材料制备工艺研究进展[J]. 功能材料,2016, 47(S2):10-15.
DU L,TANG Q,LIN X Z,et al. Research progress on preparation process of SiO2 nano-porous super thermal insulation materials[J]. Journal of Functional Materials,2016, 47(S2):10-15.
[5] 司坤. 真空绝热保温墙板的制备技术与性能研究[D]. 南京:东南大学,2012.
SI K. Preparation and performance of vacuum insulation wall panel[D]. Nanjing: Southeast University,2012.
[6] KWON J S,JUNG H Y,YEO I S,et al. Outgassing characteristics of a polycarbonate core material for vacuum insulation panels[J]. Vacuum, 2011,85(8):839-846.
[7] YANG C G,XU L,WANG J,et al. Outgassing of rigid open-celled polyurethane foam used in vacuum insulation panels under vacuum condition[J]. Journal of Cellular Plastics, 2007,43(1):17-30.
[8] XU T Z,CHEN Z F,ZHOU J M,et al. Ultrafine glass fiber core material produced by wet method[J]. Advanced Materials Research, 2012,430-432:1343-1347.
[9] LI C D,DUAN Z C,CHEN Q,et al. The effect of drying condition of glassfibre core material on the thermal conductivity of vacuum insulation panel[J]. Materials & Design, 2013,50:1030-1037.
[10] CHEN Z,CHEN Z F,YANG Z G,et al. Preparation and characterization of vacuum insulation panels with super-stratified glass fiber core material[J]. Energy, 2015,93:945-954.
[11] 周维域. 以加工剩余物作能源的端风机型木材干燥窑[J]. 林业科技开发,2001,15(5):50-51.
ZHOU W Y. An economic and practical drying kiln using wood residue as an energy resource[J]. China Forestry Science and Technology,2001,15(5):50-51.
[12] 吴义强,李新功,左迎峰,等. 农林剩余物无机人造板研究进展[J]. 林业工程学报,2016,1(1):8-15.
WU Y Q,LI X G,ZUO Y F,et al. Research status on the utilization of forest and agricultural biomass in inorganic wood-based panel[J]. Journal of Forestry Engineering,2016,1(1):8-15.
[13] 项东升, 王军, 张馨月,等. 杨木加工剩余物化学水解制备糠醛的研究[J]. 林业科技开发, 2009, 23(6): 82-84.
XIANG D S,WANG J,ZHANG X Y,et al. Study on the preparation of furfural from processing surplus of poplar-wood by chemical hydrolysis[J]. China Forestry Science and Technology,2009,23(6):82-84.
[14] 戴国强,李锦,陈桦莘,等. 不同氮源添加对森林废弃物腐熟效应的影响[J]. 林业科技开发,2011,25(5):111-113.
DAI G Q,LI J,CHEN H S,et al. Effect of adding different nitrogen sources on the maturity of forest wastes[J]. China Forestry Science and Technology,2011,25(5):111-113.
[15] 沈建锋,朱曙光,刘心志,等. 不同粒径稻壳粉堆积密度试验研究[J]. 可再生能源, 2008,26(5):49-52.
SHEN J F,ZHU S G,LIU X Z,et al. Experimental study on bulk density of different sizes of rice husk particles[J]. Renewable Energy Resources, 2008,26(5):49-52.
[16] LI C D,SAEED M U,PAN N,et al. Fabrication and characterization of low-cost and green vacuum insulation panels with fumed silica/rice husk ash hybrid core material[J]. Materials & Design, 2016,107:440-449.
[17] 阚安康,韩厚德,章学来,等. 提高真空绝热板绝热效果的探索[J]. 能源研究与利用, 2005(6):13-16.
KAN A K,HAN H D,ZHANG X L,et al. Explore on improvement of vacuum insulation panel insulation effect[J]. Energy Research and Utilization, 2005(6):13-16.

备注/Memo

备注/Memo:
收稿日期:2017-06-19 修回日期:2017-08-02
基金项目:福建省产业技术联合创新项目(闽发改高技[2015]518号)。
作者简介:涂春炘,男,研究方向为木材科学与技术。通信作者:范毜仔,男,教授。E-mail:Mizi.Fan@brunel.ac.uk
更新日期/Last Update: 2018-01-10