[1]左迎峰,李文豪,李萍,等.竹纤维/聚乳酸可降解复合材料的增塑改性[J].林业工程学报,2018,3(01):77-82.
 ZUO Yingfeng,LI Wenhao,LI Ping,et al.Plasticization of bamboo fiber/polylactic acid degradable composite[J].Journal of Forestry Engineering,2018,3(01):77-82.
点击复制

竹纤维/聚乳酸可降解复合材料的增塑改性()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
3
期数:
2018年01期
页码:
77-82
栏目:
生物质能源与材料
出版日期:
2018-01-15

文章信息/Info

Title:
Plasticization of bamboo fiber/polylactic acid degradable composite
文章编号:
2096-1359(2018)01-0077-06
作者:
左迎峰李文豪李萍赵星李新功吴义强*
中南林业科技大学材料科学与工程学院,长沙 410004
Author(s):
ZUO Yingfeng LI Wenhao LI Ping ZHAO Xing LI Xingong WU Yiqiang*
College of Material Science & Engineering, Central South University of Forestry & Technology, Changsha 410004, China
关键词:
竹纤维 聚乳酸 复合增塑 界面相容性 机械性能 耐水性能
Keywords:
bamboo fiber polylactic acid compound plasticization interfacial compatibility mechanical property water resistance
分类号:
TB332
文献标志码:
A
摘要:
以竹纤维和聚乳酸(PLA)为原料,乙二醇、甘油、聚乙二醇400、尿素、甲酰胺和柠檬酸酯为增塑剂,通过熔融共混法制备了竹纤维/PLA可降解复合材料。探讨了一元增塑、二元复合增塑和三元复合增塑对竹纤维/PLA复合材料拉伸强度、抗弯强度、断裂伸长率和耐水性能的影响。试验结果表明,不同增塑剂对竹纤维/PLA复合材料的增塑效果不同,甘油增塑复合材料的拉伸强度和抗弯强度最大,甲酰胺增塑复合材料的断裂伸长率最大,柠檬酸酯增塑复合材料的耐水性能最优。二元复合增塑具有协同增塑效果,甘油/柠檬酸脂复合增塑竹纤维/PLA复合材料的拉伸强度和抗弯强度最大,乙二醇/甲酰胺复合增塑竹纤维/PLA复合材料的断裂伸长率最大,乙二醇/柠檬酸酯复合增塑竹纤维/PLA复合材料的耐水性能最优。三元复合增塑在获得较好相容性的同时,复合材料的韧性明显提高,甘油/柠檬酸酯/乙二醇、甘油/柠檬酸脂/甲酰胺复合增塑竹纤维/PLA复合材料不仅具有较高的强度,且断裂伸长率和耐水性能均较好,优于一元和二元增塑效果。
Abstract:
By using bamboo fiber and polylactic acid(PLA)as raw materials, and ethylene glycol, glycerin, polyethylene glycol 400, urea, formamide and citric acid ester as plasticizers, bamboo fiber/PLA biodegradable composites were prepared by the melt blending method. The effects of unitary plasticization, 2-element compound plasticization and 3-element compound plasticization on the tensile strength, flexural strength, elongation at break and water resistance of bamboo fiber/PLA composites were investigated. The experimental results showed that the plasticizing effects of different plasticizers on bamboo fiber/PLA composites were different. The tensile strength and flexural strength of glycerin plasticized composites was the greatest, the elongation at break of formamide plasticized composites was the highest, and the citric acid ester plasticized composites had the best water resistance. The 2-element compound plasticization can achieve synergistic plasticization effect. Bamboo fiber/PLA composites compound plasticized by glycerol/citric acid had the greatest tensile strength and flexural strength. The ethylene glycol/formamide compound plasticized bamboo fiber/PLA composites had the highest elongation at break, and the polyethylene glycol/citric acid compound plasticized bamboo fiber/PLA composite had the best water resistance. The composites had good compatibility and remarkably improved toughness by using the 3-element compound plasticization. Compared with the unitary plasticization and the 2-element compound plasticization, the glycerin/citric acid ester/glycol and glycerol/citric acid/formamide compound plasticized bamboo fiber/PLA composite had greater strength, higher elongation at break and better water resistance, as well as improved plasticizing effect.

参考文献/References:

[1] 李大纲, 闫微丽, 何强, 等. 竹纤维高密度聚乙烯(HDPE)混熔生产竹塑复合材料的研究[J]. 世界竹藤通讯, 2010, 8(3): 20-23.
LI D G, YAN W L, HE Q, et al. A study of producing bamboo-plastic composites with bamboo fiber/HDPE[J]. World Bamboo and Rattan, 2010, 8(3): 20-23.
[2] 吴秋宁, 宋剑斌, 余方兵, 等. 可逆热致变色竹塑复合材料的温度与光响应及热学性能[J]. 农业工程学报, 2013, 29(14): 277-283.
WU Q N, SONG J B, YU F B, et al. Response to temperature and light and thermal property of reversibly thermochromic bamboo/plastic composite[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2013, 29(14): 277-283.
[3] 李大纲,闫微丽,何强,等. 竹塑复合材料吸水性能的研究[J]. 世界竹藤通讯, 2010, 8(4): 23-26.
LI D G, YAN W L, HE Q, et al. A study of water absorption of bamboo-plastic composites[J]. World Bamboo and Rattan, 2010, 8(4): 23-26.
[4] ASHORI A. Wood-plastic composites as promising green-composites for automotive industries![J]. Bioresource Technology, 2008, 99(11): 4661-4667.
[5] 陈复明, 王戈, 程海涛, 等. 新型竹纤维复合材料的研发[J]. 东北林业大学学报, 2016, 44(2): 80-85.
CHEN F M, WANG G, CHENG H T, et al. Development of advance bamboo fiber based composites materials[J]. Journal of Northeast Forestry University, 2016, 44(2): 80-85.
[6] HAN G, LEI Y, WU Q, et al. Bamboo-fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay[J]. Journal of Polymers and the Environment, 2008, 16(2): 123-130.
[7] WANG H, CHANG R, SHENG K C, et al. Impact response of bamboo-plastic composites with the properties of bamboo and polyvinylchloride(PVC)[J]. Journal of Bionic Engineering, 2008, 5(Supp.): 28-33.
[8] SÖDERGÅRD A, STOLT M. Properties of lactic acid based polymers and their correlation with composition[J]. Progress in Polymer Science, 2002, 27(6): 1123-1163.
[9] GUPTA B, REVAGADE N, HILBORN J. Poly(lactic acid)fiber: an overview[J]. Progress in Polymer Science, 2007, 32(4): 455-482.
[10] 李延军, 许斌, 张齐生, 等. 我国竹材加工产业现状与对策分析[J]. 林业工程学报, 2016, 1(1): 2-7.
LI Y J, XU B, ZHANG Q S, et al. Present situation and the countermeasure analysis of bamboo timber processing industry in China[J]. Journal of Forestry Engineering, 2016, 1(1): 2-7.
[11] 李新功, 郑霞, 吴义强. 竹纤维/聚乳酸复合材料界面调控[J]. 复合材料学报, 2012, 29(4): 94-98.
LI X G, ZHENG X, WU Y Q. Interface control of bamboo fibers/polylactic acid composites[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 94-98.
[12] 李新功, 郑霞, 吴义强. 界面调控对竹纤维/聚乳酸复合材料性能的影响[J]. 功能材料, 2013, 44(2): 253-257.
LI X G, ZHENG X, WU Y Q. Effect of interface control on properties of bamboo fibers/polylactic acid composites[J]. Journal of Functional Materials, 2013, 44(2): 253-257.
[13] LEE S H, WANG S Q. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(1): 80-91.
[14] 左迎峰. 干法酯化淀粉/聚乳酸复合材料相容性及其性能研究[D]. 哈尔滨:东北林业大学, 2014.
ZUO Y F. Study on compatibility and properties of dry method esterified starch/polylactic acid composites[D]. Harbin: Northeast Forestry University, 2014.
[15] TOKORO R, VU D M, OKUBO K, et al. How to improve mechanical properties of polylactic acid with bamboo fibers[J]. Journal of Materials Science, 2008, 43(2): 775-787.
[16] 杨龙, 左迎峰, 顾继友, 等. 不同增容剂对木粉/聚乳酸复合材料性能的影响[J]. 高分子材料科学与工程, 2014, 30(8): 91-95.
YANG L, ZUO Y F, GU J Y, et al. Effect of different compatibilizers on properties of wood flour/polylactic acid composite[J]. Polymeric Materials Science and Engineering, 2014, 30(8): 91-95.
[17] 左迎峰, 顾继友, 张彦华, 等. 增塑剂种类对淀粉/聚乳酸复合材料性能的影响[J]. 功能材料, 2015, 46(6): 6044-6048.
ZUO Y F, GU J Y, ZHANG Y H, et al. Effect of plasticizer types on the properties of starch/polylactic acid composites[J]. Journal of Functional Materials, 2015, 46(6): 6044-6048.

相似文献/References:

[1]李晖,朱一辛,杨志斌,等.我国竹材微观构造及竹纤维应用研究综述[J].林业工程学报,2013,27(03):1.
[2]蔡杰,余雁*,熊汉国*,等.竹纤维乙酰化改性制备醋酸纤维素[J].林业工程学报,2013,27(05):81.
 CAI Jie,YU Yan,XIONG Han guo,et al.Preparation of cellulose acetate by acetylation of bamboo cellulose[J].Journal of Forestry Engineering,2013,27(01):81.
[3]罗海,岳磊,王乃雯,等.蒸汽爆破处理对竹纤维的影响[J].林业工程学报,2014,28(02):45.
 LUO Hai,YUE Lei,WANG Naiwen,et al.Research on separation and preparation of bamboo fibers by steam explosion treatment[J].Journal of Forestry Engineering,2014,28(01):45.
[4]于辉,王会,叶晓丹,等.毛竹纤维颗粒水热处理及其对PVC基复合材料性能的影响[J].林业工程学报,2015,29(05):77.[doi:10.13360/j.issn.1000-8101.2015.05.020]
 YU Hui,WANG Hui,YE Xiaodan,et al.Hydrothermal modification of bamboo fiber particle and its influence on bamboofiberreinforced PVC composite[J].Journal of Forestry Engineering,2015,29(01):77.[doi:10.13360/j.issn.1000-8101.2015.05.020]

备注/Memo

备注/Memo:
收稿日期:2017-07-28 修回日期:2017-09-08
基金项目:国家自然科学基金(31600460); 中国博士后科学基金特别资助项目(2017T100615)。
作者简介:左迎峰,男,讲师,研究方向为生物质复合材料及胶黏剂改性。通信作者:吴义强,男,教授。E-mail:wuyq0506@126.com
更新日期/Last Update: 2018-01-10