[1]王金茹,倪晓慧,程万里,等.CNCs增强PCL复合纤维支架的静电纺丝制备及其性能表征[J].林业工程学报,2018,3(01):83-88.[doi:10.13360/j.issn.2096-1359.2018.01.014]
 WANG Jinru,NI Xiaohui,CHENG Wanli,et al.Fabrication and characterization of electro-spun composite fibrous scaffolds for tissue engineering by CNCs-reinforced PCL[J].Journal of Forestry Engineering,2018,3(01):83-88.[doi:10.13360/j.issn.2096-1359.2018.01.014]
点击复制

CNCs增强PCL复合纤维支架的静电纺丝制备及其性能表征()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
3
期数:
2018年01期
页码:
83-88
栏目:
生物质能源与材料
出版日期:
2018-01-15

文章信息/Info

Title:
Fabrication and characterization of electro-spun composite fibrous scaffolds for tissue engineering by CNCs-reinforced PCL
文章编号:
2096-1359(2018)01-0083-06
作者:
王金茹倪晓慧程万里韩广萍*
东北林业大学材料科学与工程学院,生物质材料科学与技术教育部重点实验室,哈尔滨 150040
Author(s):
WANG Jinru NI Xiaohui CHENG Wanli HAN Guangping*
College of Material Science and Engineering, Northeast Forestry University;
Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Harbin 150040, China
关键词:
静电纺丝 聚己内酯 纤维素纳米晶体 纤维支架 力学性能 细胞相容性
Keywords:
electrospinning poly(ε-caprolactone) cellulose nanocrystal fibrous scaffolds mechanical property cytocompatibility
分类号:
TQ353
DOI:
10.13360/j.issn.2096-1359.2018.01.014
文献标志码:
A
摘要:
采用静电纺丝技术制备了聚己内酯(PCL)纤维支架,并将酸水解制得的纤维素纳米晶体(CNCs)作为增强体,制备了不同CNCs加载量的CNCs/PCL复合纤维支架,以提高PCL纤维支架的力学性能,并探讨了CNCs对PCL纤维支架细胞相容性的影响。结果表明:最佳增强条件是m(CNCs)/m(PCL)为5.25%,在该条件下制备的复合纤维支架(CNCs-5.25/PCL)最大应力和断裂伸长与纯PCL纤维支架相比分别提高了291%和320%。复合纤维支架上成功培养了成人胰腺导管癌细胞(Panc-1)和肝细胞(HL7702); 对成人胰腺导管癌细胞在PCL及CNCs/PCL复合纤维支架上的增殖速率进行的单因素方差分析表明,CNCs没有增大PCL复合纤维支架的细胞毒性。CNCs可以作为静电纺PCL纤维支架的增强材料,制备具有良好力学性能和细胞相容性的纳米复合纤维支架,为CNCs在组织工程中的应用提供了理论依据。
Abstract:
In order to improve the mechanical properties of polycaprolactone(PCL)fibrous scaffolds, electro-spun pure fibrous scaffolds and composite fibrous scaffolds at various cellulose nanocrystals(CNCs)loading levels were prepared. Obtained by acid hydrolysis, the CNCs were used as a reinforcement. The morphology, crystallinity as well as thermal and mechanical properties of CNCs-filled and unfilled fibrous scaffolds were examined by the scanning electron microscopy(SEM), wide angle X-ray diffraction(WXRD), thermogravimetric analysis(TG), and tensile testing. The influences of the CNCs on the cell compatibility of the PCL fibrous scaffolds were also explored. The SEM images of the obtained fibrous scaffolds demonstrated that the nanofibers were successfully prepared and the average diameter of the fibers for the scaffolds increased slightly and then decreased with the increased CNCs loading in the fibrous scaffold. The thermal stabilities of the CNCs-reinforced fibrous scaffolds were not higher than electro-spun pure PCL fibrous scaffolds. The crystallinity of the fibrous scaffolds also increased firstly and then decreased with the increase in CNCs loading. Furthermore, the optimal reinforcement conditions of the PCL fibrous scaffolds were obtained, which was 5.25% of the mass ratio of m(CNCs)/m(PCL). The mechanical strength and elongation at break of the PCL/CNCs scaffolds at 5.25% CNCs loading increased by 291% and 320%, respectively, compared with the pure PCL fibrous scaffolds. In addition, pancreatic ductal cancer cells(Panc-1)and hepatic cells(HL7702)derived from human adult were successfully cultured on the PCL/CNCs composite fibrous scaffolds. The results of one-way variance analysis of the proliferation rate for Panc-1 on PCL and CNCs/PCL composite fiber scaffolds indicated that the CNCs did not increase the cytotoxicity of the PCL composite fibrous scaffolds. The CNCs could be used as a reinforcing material to fabricate nanocomposite fibrous scaffolds with good mechanical properties and cytocompatibility through electrospinning, which provided feasible approaches for the application of the CNCs in tissue engineering.

参考文献/References:

[1] 林丹丹,赵伟,马然,等. 从专利的角度梳理静电纺丝技术发展的脉络[J].中国发明与专利,2015(1):120-124.
LIN D D, ZHAO W, MA R, et al. From the perspective of patented comb the development of electrospinning technology[J]. China Invention & Patent, 2015(1):120-124.
[2] 蔡杰,张倩,雷苗,等.竹纤维乙酰化改性及其纳米纤维的制备研究[J]. 林业工程学报,2016,1(3):80-84.
CAI J,ZHANG Q,LEI M,et al.Acetylation of bamboo cellulose for application to electrospun nanofibers[J].Journal of Forestry Engineering, 2016,1(3):80-84.
[3] ZHOU C, SHI Q, GUO W, et al. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3847-3854
[4] 宦思琪, 程万里, 白龙,等. 静电纺丝制备聚苯乙烯/纳米纤维素晶体纳米复合薄膜及其性能表征[J]. 高分子材料科学与工程, 2016, 32(3):141-146.
HUAN S Q, CHENG W L, BAI L, et al. Fabrication and characterization of electrospun polystyrene/cellulose nanocrystals nanofibrous films[J]. Polymer Materials Science and Engineering, 2016, 32(3):141-146.
[5] GHOSAL K, MANAKHOV A, ZAJÍCˇKOVÁ L, et al. Structural and surface compatibility study of modified electrospun poly(ε-caprolactone)(PCL)composites for skin tissue engineering[J]. AAPS Pharm Sci Tech, 2017, 18(1): 72-81.
[6] CHO S J, JUNG S M, KANG M, et al. Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b-PCL block copolymers for enhanced cell biocompatibility[J]. Polymer, 2015, 69(1): 95-102.
[7] FIROOZI N, REZAYAN A H, REZAEI S J T, et al. Synthesis of poly(ε-caprolactone)based polyurethane semi-interpenetrating polymer networks as scaffolds for skin tissue regeneration[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017(just-accepted).
[8] CHAKRAPANI V Y, GNANAMANI A, GIRIDEV V R, et al. Electrospinning of type I collagen and PCL nanofibers using acetic acid[J]. Journal of Applied Polymer Science, 2012, 125(4): 3221-3227.
[9] MAHESHWARI S U, KUMAR S V, NAGIAH N, et al. Electrospinning of polyvinylalcohol—polycaprolactone compositesca ffolds for tissue engineering applications[J]. Polymer Bulletin, 2013, 70(11): 2995-3010.
[10] SAEED K, PARK S Y, LEE H J, et al. Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite[J]. Polymer, 2006, 47(23): 8019-8025.
[11] LIEW K M, LEI Z X, ZHANG L W. Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review[J]. Composite Structures, 2015, 120: 90-97.
[12] 邸明伟,高振华.生物质材料现代分析技术[M].北京:化学工业出版社,2010:197.
[13] HUAN S Q, BAI L, CHENG W, et al. Manufacture of electrospun all-aqueous poly(vinyl alcohol)/cellulose nanocrystal composite nanofibrous mats with enhanced properties through controlling fibers arrangement and microstructure[J]. Polymer, 2016, 92: 25-35.
[14] MO Y, GUO R, LIU J, et al. Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals[J]. Colloids and Surfaces B: Biointerfaces, 2015, 132: 177-184.
[15] GOMES S R, RODRIGUES G, MARTINS G G, et al. In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: a comparative study[J]. Materials Science & Engineering C, 2015, 46:348-358.
[16] LEE K H, KIM H Y, KHIL M S,et al. Characterization of nano-structured poly(ε-caprolactone)nonwoven mats via electrospinning[J]. Polymer, 2003, 44(4):1287-1294.
[17] AKHLAGHI S P, BERRY R C, TAM K C. Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications[J]. Cellulose, 2013, 20(4):1747-1764.
[18] EI MIRI N, ABDELOUAHDI K, ZAHOUILY M, et al. Bio-nanocomposite films based on cellulose nanocrystals filled polyvinyl alcohol/chitosan polymer blend[J]. Journal of Applied Polymer Science, 2015, 132(22).
[19] DOMINGUES R M, CHIERA S, GERSHOVICH P, et al. Enhancing the biomechanical performance of anisotropic nanofibrous scaffolds in tendon tissue engineering: reinforcement with cellulose nanocrystals[J]. Advanced Healthcare Materials, 2016, 5(11): 1364-1375.
[20] ZHOU C, SHI Q, GUO W, et al. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3847-3854.

备注/Memo

备注/Memo:
收稿日期:2017-05-15 修回日期:2017-08-20
基金项目:国家自然科学基金(31470580); 国家林业局引进先进林业科学技术项目(2013-4-11)。
作者简介:王金茹,女,研究方向为纳米复合材料的制备与表征。通信作者:韩广萍,女,教授。E-mail: guangping.han@nefu.edu.cn
更新日期/Last Update: 2018-01-10