[1]翟恩昱,郑加强,周宏平,等.扇形雾喷头磨损对微生物农药施药性能的影响[J].林业工程学报,2018,3(01):109-116.
 ZHAI Enyu,ZHENG Jiaqiang,ZHOU Hongping,et al.Effects of flat-fan nozzle wear on application of microbial pesticides[J].Journal of Forestry Engineering,2018,3(01):109-116.
点击复制

扇形雾喷头磨损对微生物农药施药性能的影响()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
3
期数:
2018年01期
页码:
109-116
栏目:
装备与信息化
出版日期:
2018-01-15

文章信息/Info

Title:
Effects of flat-fan nozzle wear on application of microbial pesticides
文章编号:
2096-1359(2018)01-0109-08
作者:
翟恩昱郑加强周宏平茹煜李建华
南京林业大学机械电子工程学院,南京 210037
Author(s):
ZHAI Enyu ZHENG Jiaqiang ZHOU Hongping RU Yu LI Jianhua
College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
微生物农药 扇形雾喷头 磨损 球头结构 雾滴沉积量 活体微生物存活率
Keywords:
microbial pesticides flat-fan nozzle wear spherical-top droplet deposition viability of microbial pesticides
分类号:
S491
文献标志码:
A
摘要:
农林病虫害防治中,微生物农药因其具有不污染环境、防治作用持久、无残留、杀伤特异性强等优点,已逐渐成为研究热点和重要方向,但因利用率较低、施药技术落后、专业施药器械匮乏等原因限制了其在农林病虫害防治中的应用。笔者分析了扇形雾喷头球头结构与雾滴尺寸、雾滴沉积量和农药中的活体微生物存活率等微生物农药活性衡量指标的相关性。建立了喷头磨损测试系统,雾滴沉积量和微生物农药活性测试系统,利用三维测量仪和激光粒度仪等试验测试了扇形雾喷头球头结构尺寸与雾滴沉积量和农药中活体微生物的存活率的变化关系。采用SPSS软件通过线性回归分析方法量化分析微生物农药活性各性能指标与扇形雾喷头球头尺寸之间的相关性,建立了线性回归数学模型。分析认为:目前沿用的喷头失效评估方法不适用于微生物农药施药,为保持微生物农药活性,满足其使用要求,TP11002型扇形雾喷头磨损率应小于6.74%,球头短轴尺寸不能超过0.5 mm,TP8004扇形雾喷头磨损率应小于6.91%,球头短轴尺寸不能超过0.45 mm。结果表明,微生物农药活性不能仅以农药中的活体微生物存活率为衡量指标,应考虑到雾滴沉积量和活体微生物存活率的综合影响。扇形雾喷头球头结构尺寸与雾滴沉积量和活体微生物存活率存在线性关系,根据扇形雾喷头球头结构尺寸的变化判断微生物农药活性是可行的。本研究结果为微生物农药施药时对施药器械的失效评估和提高微生物农药防治效果提供了理论和技术支撑。
Abstract:
Microbial pesticides have become the hotspot in biological control of agriculture and forestry diseases and insect pests because they have the advantages of no pollutant emission, no chemical residue, sustainable control, etc. However, the application of microbial pesticides is still limited because of the low availability, backward spraying technology and the lack of appropriate sprayer. In this paper, the correlation between the pesticide evaluation indexes(droplet size and deposition, and viability of microbial pesticides)of the biological activity and the orifice structure was analyzed; and the mutual relationship between these evaluation indexes was experimentally studied by using nozzle wear experiment system, droplet deposition and viability of microbial pesticides measurement system, 3D-admeasuring apparatus and laser diffraction particle analyzer. The mathematical models of the relationship between the size of spherical-top of flat-fan orifice and microbial pesticides activity were established. The results showed that the current assessment method for nozzle failure was not suitable for microbial pesticides application. In addition, the evaluation of microbial pesticides activity should take into account the influence of droplet deposition and viability of microbial pesticides. There exists a linear relationship between the spherical-top of flat-fan orifice and the droplet deposition and the viability of microbial pesticides. Accordingly, the microbial pesticides activity can be evaluated by the size of the spherical-top of flat-fan orifice. The results provide the foundation on how to assess nozzle failure during the application of microbial pesticides and how to treat plant pests and diseases effectively.

参考文献/References:

[1] 张礼生, 陈红印. 生物防治作用物研发与应用的进展[J]. 中国生物防治学报, 2014, 30(5):581-586.
ZHANG L S, CHEN H Y. Advances in research and application of biological control agents in China[J]. Chinese Journal of Biological Control, 2014, 30(5):581-586.
[2] 范月蕾, 赵晓勤, 陈大明, 等. 微生物杀虫剂研发现状和产业化发展态势[J]. 生物产业技术, 2016(1):54-58.
[3] 张慧春, 郑加强, 周宏平, 等. 转笼式生物农药雾化喷头的性能试验[J]. 农业工程学报, 2013, 29(4):63-70.
ZHANG H C, ZHENG J Q, ZHOU H P, et al. Performance experiments of rotary cage atomizer for biological pesticide application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(4):63-70.
[4] 张玲. 农药生测喷雾技术试验研究[J]. 中国农机化学报, 2013, 34(2):99-101.
ZHANG L. Experimental study on spray technology of pesticide bioassay[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(2): 99-101.
[5] BRUSSELMAN E, BECK B, TEMMERMAN F, et al. Distribution of entomopathogenic nematodes in a biopesticide spray[J]. Transactions of the ASABE, 2011,54(6):1981-1989.
[6] LANZONI A, ADE G, MARTELLI R, et al. Technological aspects of Steinernema carpocapsae spray application alone or mixed with Bacillus thuringiensis aizawai in spinach crop[J]. Bulletin of Insectology, 2014, 67(1): 115-123.
[7] JOSHI J B, ELIAS C B, PATOLE M S. Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 62(2): 121-141.
[8] MARDIKAR S H, NIRANJAN K. Observations on the shear damage to different animal cells in a concentric cylinder viscometer[J]. Biotechnology and Bioengineering, 2000, 68(6): 697-704.
[9] FIFE J P, OZKAN H E, DERKSEN R C, et al. Viability of a biological pest control agent through hydraulic nozzles[J]. Transactions of the ASAE, 2005, 48(1): 45-54.
[10] 王振伟, 李华北. 高压对微生物的生长、生理和存活的影响效应研究进展[J]. 进展科技创新导报, 2009(8):4.
[11] 李建华, 郑加强, 余果. 喷雾接种生物颗粒两相流及其对菌种活性的影响[J]. 农业工程学报, 2014, 30(1):47-54.
LI J H, ZHENG J Q, YU G. Solid-liquid two-phase flow of microbial particle spraying inoculation and its influence on microbial viability[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1):47-54.
[12] GREGORIADES N, CLAY J, MA N, et al. Cell damage of microcarrier cultures as a function of local energy dissipation created by a rapid extensional flow[J]. Biotechnology and Bioengineering, 2000, 69(2): 171-182.
[13] MA N, KOELLING K W, CHALMERS J J. Fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces[J]. Biotechnology and Bioengineering, 2002, 80(4): 428-437.
[14] FIFE J P, DERKSEN R C, OZKAN H E, et al. Evaluation of a contraction flow field on hydrodynamic damage to entomopathogenic nematodes—a biological pest control agent[J]. Biotechnology and Bioengineering, 2004, 86(1): 96-107.
[15] FIFE J P, DERKSEN R C, OZKAN H E, et al. Using CFD methods to predict damage of a biological pest control agent during passage through a hydraulic nozzle[C]∥2003 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers, 2003: 1.
[16] 翟恩昱, 郑加强. 固体颗粒对扇形雾喷头的冲蚀磨损分析[J]. 农业工程学报, 2012, 28(12):18-23.
ZHAI E Y, ZHENG J Q. Erosion wear analysis of fan-shaped spraying nozzle affected by particles[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(12):18-23.
[17] 刘振华, 邢雪琨. 微生物农药助剂研究进展[J]. 基因组学与应用生物学, 2016, 35(8):2109-2113.
LIU Z H, XING X K. Research progress of microbial pesticide additives[J]. Genomics and Applied Biology, 2016, 35(8): 2109-2113.
[18] BECK B, BRUSSELMAN E, NUYTTENS D, et al. Improving foliar applications of entomopathogenic nematodes by selecting adjuvants and spray nozzles[J]. Biocontrol Science and Technology, 2013, 23(5): 507-520.
[19] JIN X X, HUANG Y B, THOMSON S J, et al. Effects of conidial densities and spray volume of Metarhizium anisopliae and Beauveria bassiana fungal suspensions on conidial viability, droplet size and deposition coverage in bioassay using a novel bioassay spray system[J]. Biocontrol Science and Technology, 2013, 23(3): 362-366.
[20] 刘邮洲, 吴萍, 罗楚平, 等. 喷雾压力和药液流量对井冈·枯芽菌在水稻叶片定殖的影响[J]. 植物保护, 2008, 34(4):65-68.
LIU Y Z, WU P, LUO C P, et al. Influences of operating pressure and spray volume on colonization of the biotic fungicide Bacillus subtilis[J]. Plant Protection, 2008, 34(4):65-68.
[21] 刘邮洲, 陈志谊, 刘永锋, 等. 拮抗细菌B-916对水稻病原菌的抑制效果及其定殖动态研究[J]. 江苏农业科学, 2005(6):48-49, 72.
LIU Y Z, CHEN Z Y, LIU Y F, et al. Suppression against rice pathogens' mycelia growth and dynamic distribution in rice of antagonistic bacteria B-916[J]. Jiangsu Agricultural Sciences, 2005(6):48-49, 72.
[22] 翟恩昱, 郑加强. 扇形喷头球头结构建模与磨损试验[J]. 农业机械学报, 2011, 42(8):65-69.
ZHAI E Y, ZHENG J Q. Spherical-top structure mathematical model and wear experiments of flat-fan nozzle[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(8):65-69.
[23] 武井田. N-110系列缝隙式喷雾喷头的报废标准探讨[J]. 黑龙江八一农垦大学学报, 1989(1):67-74.
WU J T. Scrapping standard analysis of N-110 series fissure-type sprayer nozzle[J]. Journal of Heilongjiang August First Land Reclamation University, 1989(1):67-74.
[24] ZWIETERING T N. Suspending of solid particles in liquid by agitators[J]. Chemical Engineering Science, 1958, 8(3/4): 244-253.
[25] 翟恩昱, 郑加强, 甘英俊. 液力式喷头磨损测量试验台的研制[J]. 中国农机化学报, 2013, 34(2): 189-193.
ZHAI E Y, ZHENG J Q, GAN Y J. Set-up of wear measurement for hydraulic nozzles[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(2): 189-193.
[26] BRYANT J E, YENDOL W G. Evaluation of the influence of droplet size and density of Bacillus thuringiensis against gypsy moth larvae(Lepidoptera: Lymantriidae)[J]. Journal of Economic Entomology, 1988, 81(1): 130-134.
[27] SVAROVSKY L. Hydrocyclones[M]. London:Holt, Rinehartand Winston,1984:1-5.

备注/Memo

备注/Memo:
收稿日期:2017-04-21 修回日期:2017-09-20
基金项目:江苏省高校自然科学研究面上项目(16KJB210006)。
作者简介:翟恩昱,男,讲师,研究方向为精确农药使用技术与设备。E-mail:zny0001@njfu.com.cn
更新日期/Last Update: 2018-01-10