[1]方菲,申黎明*,陈玉霞,等.床垫支撑力和下肢屈曲角度对膝髋关节生物力学的影响[J].林业工程学报,2018,3(01):148-152.[doi:10.13360/j.issn.2096-1359.2018.01.024]
 FANG Fei,SHEN Liming,CHEN Yuxia,et al.Biomechanical effect of mattress force and knee flexion angle on knee and hip joints in supine position[J].Journal of Forestry Engineering,2018,3(01):148-152.[doi:10.13360/j.issn.2096-1359.2018.01.024]
点击复制

床垫支撑力和下肢屈曲角度对膝髋关节生物力学的影响()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
3
期数:
2018年01期
页码:
148-152
栏目:
家具制造工程
出版日期:
2018-01-15

文章信息/Info

Title:
Biomechanical effect of mattress force and knee flexion angle on knee and hip joints in supine position
文章编号:
2096-1359(2018)01-0148-05
作者:
方菲1申黎明1*陈玉霞2郭勇2
1.南京林业大学家居与工业设计学院,南京 210037;
2.安徽农业大学林学与园林学院,合肥 230036
Author(s):
FANG Fei1 SHEN Liming1 CHEN Yuxia2 GUO Yong2
1.College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China;
2.College of Forestry and Landscape Architecture, Anhui Agriculture University, Hefei 230036, China
关键词:
床垫 支撑力 膝髋关节 生物力学
Keywords:
mattress supporting force knee and hip joints biomechanics
分类号:
R318.01
DOI:
10.13360/j.issn.2096-1359.2018.01.024
文献标志码:
A
摘要:
对人体仰卧屈腿姿势下膝关节和髋关节进行生物力学分析,建立了膝关节和髋关节关节力和肌肉力的计算公式,并探究了床垫支撑力和下肢屈曲角度对膝关节和髋关节关节力和肌肉肌力大小的影响。结果表明:当膝关节屈曲角度在0°~80°范围内时,随着膝关节屈曲角度的增大,膝关节受力及股四头肌肌力逐渐减小; 当膝关节屈曲角度大于80°时,膝关节力和股四头肌肌力保持稳定,且数值较小; 髋关节屈曲在小于60°范围内的关节力和髂腰肌肌力相对较小; 随着床垫对足部和臀部支撑力的增大,髋关节和膝关节的关节力和肌力均增大。人体在睡眠过程中膝关节和髋关节屈曲角度多小于90°,而在低于90°的屈曲姿势下膝关节肌力和髋关节力较大,肌肉持续施力,容易产生疲劳,因此睡眠过程中人体持续保持屈腿姿势的时间有限,同时从生物力学角度阐明了人体在睡眠过程中需要进行睡姿调整的内在原因。
Abstract:
Based on biomechanical analysis on knee and hip joints in supine position with knee flexion, formulations were developed to calculate joint and muscle forces of knee and hip joints. The effect of mattress force and joint angles on joints and muscle forces of knee and hip were also investigated in this study. The results showed that, with the knee flexion angle in the range of 0°-80°, the knee joint and quadriceps femor muscle forces decreased with the increase of the knee flexion angle. The values of knee joint and muscle forces were relatively low and stable when the flexion angle was over 80°. The hip joint and iliopsoas muscle forces were relatively lower when the hip joint flexion was lower than 60°. With an increase in mattress forces on foot and hip, the joints and muscle forces of both knee and hip joints increased. During the most sleeping conditions, the angles of knee and hip joints were lower than 90° with higher knee muscle and hip joint forces, leading to muscle fatigue. It was demonstrated that the time to keep knee and hip flexion position was limited and illuminated intrinsic reason for the necessity of posture change during sleep from the angle of biomechanics.

参考文献/References:

[1] HAEX B. Back and bed: ergonomic aspects of sleeping[M]. Boca Raton: CRC Press, 2004:46.
[2] KENNEDY B. Biomechanical problems affecting the spine[J]. Australian Journal of Physiotherapy, 1973, 19(3):91.
[3] DZVONIK M L, KRIPKE D F, KLAUBER M. Body position changes and periodic movements in sleep[J]. Sleep, 1986, 9(4):484.
[4] MAGARETA N, VICTOR H F. Basic biomechanics of the musculoskeletal system[M]. Philadelphia: Lippincott Williams & Wilkins, 2001:278.
[5] 陈玉霞, 申黎明, 郭勇, 等. 床垫的人性化设计对睡眠健康的影响[J]. 包装工程, 2012(12):36-39, 71.
CHEN Y X, SHEN L M, GUO Y, et al. The influences of human design of mattress on sleeping[J]. Packaging Engineering, 2012(12):36-39, 71.
[6] KEEGAN J. Alterations of the lumbar curve related to posture and seating[J]. Journal of Bone & Joint Surgery American Volume, 1953, 35(3):589-603.
[7] MASSION J. Movement, posture and equilibrium: interaction and coordination[J]. Prog Neurobiology, 1992, 38: 35-56.
[8] 刘爱峰, 马剑雄, 魏强, 等. 膝关节生物力学模型研究进展[J]. 中国矫形外科杂志, 2012, 20(19):1774-1776.
LIU A F, MA J X, WEI Q, et al. A literature review on biomechanical model of knee joint[J]. Orthopedic Journal of China, 2012, 20(19):1774-1776.
[9] 鲍春雨, 孟庆华. 基于有限元法人体膝关节生物力学模型的建立与分析[J]. 武汉体育学院学报, 2010, 44(5):56-59, 66.
BAO C Y, MENG Q H. Establishment of three-dimensional biomechanics model of knee joint and its analysis based on finite element method[J]. Journal of Wuhan Institute of Physical Education, 2010, 44(5):56-59, 66.
[10] SEELEY R, STEPHENS T D, TATE P. Anatomy and Physiology[M]. New York: McGraw Hill, 2007:172.
[11] 周士枋,丁伯坦. 运动学[M]. 北京:华夏出版社, 2004:188.
ZHOU S F, DING B T. Kinesiology[M]. Beijing:Huaxia Press, 2004:188.
[12] 何川, 李彦林, 张振光, 等. 不同屈曲状态下膝关节韧带生物力学的有限元分析[J]. 中国运动医学杂志, 2015, 34(7):662-669.
HE C, LI Y L, ZHANG Z G, et al. Finite element analysis on biomechanical properties of knee ligaments under loading at different flexion angles[J]. Chinese Journal of Sports Medicine, 2015, 34(7):662-669.
[13] ÖZKAYA N, NORDIN M, GOLDSHEYDER D, et al. Fundamentals of biomechanics[M]. Berlin: Springer, 2012: 124,131.
[14] NEUMANN D A. Kinesiology of the musculoskeletal system[M]. St. Louis: Mosby, 2010: 479,505, 561.
[15] WINTER D A. Biomechanics and motor control of human movement[M]. 4th ed. Hoboken: John Wiley & Sons, 2009:100.

备注/Memo

备注/Memo:
收稿日期:2017-06-07 修回日期:2017-07-07
基金项目:安徽省自然科学基金(1308085QH133)。
作者简介:方菲,女,博士生,研究方向为家具人体工程学。通讯作者:申黎明,男,教授。Email:shenlimingda@hotmail.com
更新日期/Last Update: 2018-01-10