[1]黄道榜,王威,陈勇花,等.基于响应面法的重组竹硅铝溶胶防霉剂研究[J].林业工程学报,2018,3(03):29-34.[doi:10.13360/j.Issn.2096-1359.2018.03.005]
 HUANG Daobang,WANG Wei,CHEN Yonghua,et al.Optimization of silica-alumina sol anti-mold agent of bamboo scrimber using response surface methodology[J].Journal of Forestry Engineering,2018,3(03):29-34.[doi:10.13360/j.Issn.2096-1359.2018.03.005]
点击复制

基于响应面法的重组竹硅铝溶胶防霉剂研究()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
3
期数:
2018年03期
页码:
29-34
栏目:
木材科学与技术
出版日期:
2018-05-15

文章信息/Info

Title:
Optimization of silica-alumina sol anti-mold agent of bamboo scrimber using response surface methodology
文章编号:
2096-1359(2018)03-0029-06
作者:
黄道榜王威陈勇花吴振增谢拥群杨文斌饶久平*
福建农林大学材料工程学院,福州 350002
Author(s):
HUANG Daobang WANG Wei CHEN Yonghua WU Zhenzeng XIE Yongqun YANG Wenbin RAO Jiuping*
College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
竹材防霉 硅铝溶胶 重组竹 防霉剂 响应面法 防霉处理
Keywords:
bamboo mildewproof silica-alumina sol bamboo scrimber anti-mold agent response surface methodology mildewproof treatment
分类号:
S784
DOI:
10.13360/j.Issn.2096-1359.2018.03.005
文献标志码:
A
摘要:
为了满足防霉型重组竹的制造需要,在炭化竹束中引入硅、铝、铜、硼等无机物,研究开发了以溶胶凝胶法制备的硅铝溶胶固着铜硼复配防霉剂。采用响应面分析法研究硅铝溶胶、磷酸、硼酸和铜盐4个组分处理炭化竹束并干燥,经热压成重组竹板材,以黑曲霉、绿色木霉、桔青霉3种霉菌的平均防治效力作为防霉性能的评定指标,分析防霉剂各组分对重组竹防霉性能的影响,并优化出重组竹硅铝溶胶防霉剂的制备工艺。结果表明:当硅铝溶胶、磷酸、硼酸和铜盐的较佳质量分数分别为20.78%,3.06%,1.66%和0.99%时,制备的防霉剂对霉菌的防治效力可达到91.75%,显著提高了重组竹的防霉性能,且具有良好的物理力学性能和尺寸稳定性,其中吸水厚度膨胀率可达3.27%,弹性模量为10 560.92 MPa,静曲强度为103.06 MPa。通过SEM对重组竹微观形貌观察得出,防霉剂处理前后的重组竹表面结构具有明显的差异性,硅铝溶胶防霉剂在重组竹中形成了不规则的多孔结构,有助于铜和硼的固着。研究结果将为生产防霉型重组竹提供更多选择。
Abstract:
Interest has recently arisen in the development of the anti-mold bamboo products due to their many advantages, such as environmental friendly products, wide applicability and reduced economic losses. Some researchers have explored the introduction of silicon-aluminum inorganic materials into fiber materials with the addition of sol-gel, which is used to prepare anti-mold agent with high efficient mildew resistance and anti-leachability. In the process of bamboo scrimber preparation, the copper boron compound anti-mold agent fixed with silica-alumina sol was introduced. This paper is focused on analyzing the effect of four factors including the mass fraction of phosphoric acid, silica-alumina sols, boric acids and copper salts, on the performance of anti-mold of bamboo scrimber by using response surface analysis. The preparation technology of anti-mold was optimized in term of the mean control efficacy of three types of mold included Aspergillus niger V. Tiegh, Trichoderma viride Pers. ex Fr. and Penicillam citrinum Thom. Furthermore, the better mass fractions of raw materials were determined as follows: 3.06% phosphoric acid, 20.78% silica-alumina sol, 1.66% boric acid and 0.99% copper salt. The control effect of the bamboo scrimber prepared can reach 91.75%. Apparently, the mildew resistance of bamboo scrimber was significantly increased. It had good mechanical properties and dimensional stability, such as the thickness swelling rate of water absorption could be as low as 3.27%, the elastic modulus was 10 560.92 MPa, and the static bending strength was 103.06 MPa. By using the electronic scanning electron microscopy(SEM)analysis,it was found that the structure of the bamboo scrimber before and after the anti-mold treatment was obviously different. The irregular porous structure was formed in the bamboo scrimber treated with the anti-mold agent of copper boron compound fixing to silica-alumina sol. It became conductive due to the adding of copper and boron, while the crack and sheet structure weakened mechanical properties slightly. At the same time, the anti-leachability of the bamboo scrimber was improved effectively. Therefore, this methodology provides an effective way to solve the problem of the bamboo scrimber mold.

参考文献/References:

[1] 李延军, 许斌, 张齐生, 等. 我国竹材加工产业现状与对策分析[J]. 林业工程学报, 2016,1(1):2-7.
LI Y J, XU B, ZHANG Q S, et al. Present situation and the countermeasure analysis of bamboo timber processing industry in China[J]. Journal of Forestry Enginerring, 2016,1(1):2-7.
[2] 国家林业局. 中国林业发展报告[M]. 北京: 中国林业出版社, 2016: 193.
State Forestry Administration. China forestry development report[M]. Beijing: China Forestry Publishing House, 2016: 193.
[3] 李岚, 朱霖, 朱平. 中国竹资源及竹产业发展现状分析[J]. 南方农业, 2017,11(1):6-9.
LI L, ZHU L, ZHU P. Analysis on the development status of bamboo resources and bamboo industry in China[J]. South China Agriculture, 2017,11(1):6-9.
[4] 余养伦, 刘波, 于文吉. 重组竹新技术和新产品开发研究进展[J]. 国际木业, 2014,44(7):8-13.
YU Y L, LIU B, YU W J. Research development on new technology and product of bamboo scrimber[J]. International Wood Industry, 2014,44(7):8-13.
[5] 徐有明, 郝培应, 刘清平. 竹材性质及其资源开发利用的研究进展[J]. 东北林业大学学报, 2003,31(5):71-77.
XU Y M, HAO P Y, LIU Q P. Advances of bamboo properties and their resources exploitation and utilization[J]. Journal of Northeast Forestry University,2003,31(5):71-77.
[6] 于文吉, 江泽慧, 叶克林. 竹材特性研究及其进展[J]. 世界林业研究, 2002(2):50-55.
YU W J, JIANG Z H, YE K L. Research on bamboo characteristics and its progress[J]. World Forestry Research, 2002(2):50-55.
[7] 冉隆贤, 吴光金, 林雪坚. 竹材霉菌生理特性及防霉研究[J]. 中南林学院学报, 1996,17(2):14-19.
RAN L X, WU G J, LIN X J.Physiological characteristics of moulds infecting bamboo wood and mould control[J]. Journal of Central South Forestry University, 1996,17(2):14-19.
[8] 王文久, 辉朝茂, 刘翠, 等. 云南14种主要材用竹化学成分研究[J]. 竹子研究汇刊, 1999,18(2):74-78.
WANG W J, HUI C M, LIU C, et al. A study on the chemical compositions of 14 timber bamboo species in Yunnan province[J]. Journal of Bamboo Research, 1999,18(2):74-78.
[9] METTLEMARY S P. Influence of alkaline copperquat(ACQ)solution parameters on copper complex distribution and leaching[D]. Toronto:University of Toronto,2011.
[10] UNG Y T,COOPER P A. Copper stabilization in ACQ-D treated wood: retention, temperature and species effects[J]. Holz als Roh-und Werkstoff,2005,63(3):186-191.
[11] 金菊婉, 王锦涛, 姬宁, 等. 季铵铜和铜唑预处理对马尾松单板层积材性能的影响[J]. 南京林业大学学报(自然科学版), 2016,40(4):119-124.
JIN J W, WANG J T, JI N, et al. Influences of pretreatment with alkaline copperquat and copper azole on properties of masson pine laminated veneer lumber[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016,40(4):119-124.
[12] MAHLTIG B, SWABODA C, ROESSLER A, et al. Functionalising wood by nanosol application[J]. Journal of Materials Chemistry, 2008,18(27):3180-3192.
[13] KONKOWSKI A M, BGROBELNA B, WIDERNIK T, et al. The coordination state of copper(Ⅱ)complexes anchored and grafted onto the surface of organically modified silicates[J]. Langmuir, 1999,15(18):5814-5819.
[14] KARTAL S N, YOSHIMURA T I Y. Modification of wood with Si compounds to limit boron leaching from treated wood and to increase termite and decay resistance[J]. International Biodeterioration & Biodegradation, 2009,63(2):187-190.
[15] PALANTI S, FECI E, PREDIERI G, et al. Copper anchored to amino-group functionalized silica gel as wood preservative against brown-rot decay[J]. Maderas: Cienciay Tecnología, 2010,12(3):259-266.
[16] PALANTI S, PREDIERI G, VIGNALI F, et al. Copper complexes grafted to functionalized silica gel as wood preservatives against the brown rot fungus Coniophora puteana[J]. Wood Science and Technology, 2011,45(4):707-718.
[17] YAMAGUCHI H. Silicic acid: boric acid complexes as wood preservatives[J]. Wood Science and Technology, 2003,37(3/4):287-297.
[18] KICKELBICK G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale[J]. Progress in Polymer Science,2003,28(1):83-114.
[19] HUAMR M, ZLINDRA D, POHLEVEN F. Improvement of fungicidal properties and copper fixation of copper-ethanolamine wood preservatives using octanoic acid and boron compounds[J]. Holz als Roh-und Werkstoff,2007,65(1):17-21.
[20] 牛敏,叶书华,谢拥群,等.硅凝胶植物纤维复合材料的微观构造[J]. 福建农林大学学报(自然版),2014,43(6):652-656.
NIU M, YE S H, XIE Y Q, et al. Microstructure of the composite made by silicate gel and plant fiber[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition),2014,43(6):652-656.
[21] CHEN T, WU Z, NIU M, et al. Effect of Si-Al molar ratio on microstructure and mechanical properties of ultra-low density fiberboard[J]. European Journal of Wood & Wood Products, 2016, 74(2):151-160.
[22] 吴秉岭,余养伦,齐锦秋,等.竹束精细疏解与炭化处理对重组竹性能的影响[J]. 南京林业大学学报(自然科学版),2014,38(6):115-120.
WU B L, YU Y L, QI J Q, et al. Effects of bamboo bundles treated with fine fluffing and carbonized treatment on the properties of bamboo scrimber[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2014,38(6):115-120.
[23] 邓启平,孙照斌.竹材流体渗透性的研究现状[J]. 西北林学院学报,2011,31(S1):21-24.
DENG Q P, SUN Z B. Review of fluid permeability of bambootimber[J]. Journal of Southwest Forestry University, 2011,31(S1):21-24.
[24] TANG L, HUANG B, OU W, et al. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose[J]. Bioresource Technology, 2011,102(23):10973-10977.

备注/Memo

备注/Memo:
收稿日期:2017-10-15 修回日期:2018-01-10
基金项目:福建省高校产学合作项目(2016H6005)。
作者简介:黄道榜,男,研究方向为木质材料学。通信作者:饶久平,男,副教授。E-mail: fafurjp@163.com
更新日期/Last Update: 2018-05-15