[1]鞠泽辉,林杨帆△,何倩,等.基于木材微观特性的胶合板隔声量模拟[J].林业工程学报,2018,3(03):42-47.[doi:10.13360/j.Issn.2096-1359.2018.03.007]
 JU Zehui,LIN Yangfan,HE Qian,et al.Simulation of plywood sound insulation based on wood anatomical characteristic[J].Journal of Forestry Engineering,2018,3(03):42-47.[doi:10.13360/j.Issn.2096-1359.2018.03.007]
点击复制

基于木材微观特性的胶合板隔声量模拟()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
3
期数:
2018年03期
页码:
42-47
栏目:
木材科学与技术
出版日期:
2018-05-15

文章信息/Info

Title:
Simulation of plywood sound insulation based on wood anatomical characteristic
文章编号:
2096-1359(2018)03-0042-06
作者:
鞠泽辉1林杨帆2△何倩1洪璐1张海洋1詹天翼1卢晓宁1*
1.南京林业大学材料科学与工程学院,南京 210037;
2.南京林业大学理学院,南京 210037
Author(s):
JU Zehui1LIN Yangfan2△HE Qian1HONG Lu1ZHANG Haiyang1ZHAN Tianyi1LU Xiaoning1*
1.College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
2.College of Science, Nanjing Forestry University, Nanjing 210037, China
关键词:
传递函数 隔声量预测 木材微观特性 胶层 胶合板
Keywords:
transfer function sound insulation prediction wood microscopic characteristics bonding interface plywood
分类号:
S781.38
DOI:
10.13360/j.Issn.2096-1359.2018.03.007
文献标志码:
A
摘要:
基于Biot理论的隔声模型,将马尾松等效为某一介质,通过木材微观特性(管胞长度、管胞直径、纹孔和孔隙率等),确定马尾松参数与等效介质密度和体积弹性模量之间的函数关系,对马尾松胶合板的隔声量进行预测。借助Matlab软件编制隔声量的相应计算程序软件,同时,通过Matlab软件运用复合材料的弹性模量公式,预测马尾松胶合板的弹性模量。通过隔声量实测与模拟值比较可知,马尾松胶合板的隔声量实测值与理论值相吻合。对马尾松早晚材分开进行胶合板隔声量计算,并引入胶层的概念,从而提高隔声量预测的准确性。通过预测马尾松胶合板的弹性模量,进而计算出其相对应的临界频率,将模拟临界频率与实测临界频率进行对比分析。研究表明:酚醛树脂所制胶合板的隔声量高于脲醛树脂所制胶合板,同时,酚醛树脂对抑制吻合效应具有积极的作用; 随着胶合板层数的增加,隔声量也相应有所提高,临界频率向高频移动,吻合谷变浅,有效抑制了吻合效应。本研究中的隔声量预测模型可为木质复合材料的隔声量预测提供有效参考。
Abstract:
The insulation predictions of Masson pine(Pinus massoniana)plywood were carried out in order to evaluate the sound properties. The theoretical value of sound insulation was predicted by regarding the substances in wood cell wall as equivalence to specific medium based on Biot mode. The wood anatomical characteristics, such as the length and diameter of tracheid, diameter of pit and porosity, were taken into account for determining the equivalent density and bulk modulus of elasticity of wood cell wall. In this paper, the software of calculation program for sound insulation was compiled with the Matlab software, and the elastic modulus of the Masson plywood was predicted by composite modulus formula using the Matlab software. By comparing the tested and predicted values of sound insulation, the results were drawn as follows: the predicted values of sound insulation were significantly correlated with the experimental values for the Masson pine plywood. As for the Masson pine, the adjacent of earlywood and latewood was considered as sandwich structure for the calculation of sound insulation. Meanwhile, the bonding interface was involved to improve the accuracy of sound insulation prediction. By predicting the elastic modulus of the Masson plywood, the corresponding critical frequency was calculated, and the simulated critical frequency was compared with the measured critical frequency. The tested results showed that the sound insulation of plywood with phenol-formaldehyde resin was higher than that of the plywood with urea-formaldehyde resin, and it was revealed that the phenol-formaldehyde resin played a positive role in inhibiting the coincidence effect. With the increase of plywood layers, the sound insulation increased, the higher critical frequency was obtained and the anastomotic valley become shallow, and the coincidence effect was effectively inhibited. The transfer function involved in the sound insulation prediction could provide an effective reference to describe the sound insulation volume of wood-based composites in the construction and decoration areas.

参考文献/References:

[1] 徐兰英, 林利民, 唐伟. 落叶松胶合板复合墙体隔声性能测定[J]. 林业科技, 2006,31(5): 51-52.
[2] 周海宾,江泽慧,费本华.木结构墙体建造细节对其隔声性能的影响[J]. 北京林业大学学报,2007,29(3):159-163.
ZHOU H B, JIANG Z H, FEI B H. Effects of building details on sound insulation of wood structure wall[J]. Journal of Beijing Forestry University, 2007, 29(3): 159-163.
[3] KURTZE G, WATTERS B G. New wall design for high transmission loss or high damping[J]. The Journal of the Acoustical Society of America, 1959, 31(6): 739-748.
[4] MAKRIS S E, DYM C L, SMITH J M. Transmission loss optimization in acoustic sandwich panels[J]. The Journal of the Acoustical Society of America, 1986, 79(6): 1833-1843.
[5] ATTENBOROUGH K. Acoustical characteristics of porous materials[J]. Physics Reports, 1982, 82(3): 179-227.
[6] ATTENBOROUGH K. Acoustical characteristics of rigid fibrous absorbents and granular materials[J]. The Journal of the Acoustical Society of America, 1983, 73(3): 785-799.
[7] WILSON D K. Relaxation-matched modeling of propagation through porous media, including fractal pore structure[J]. The Journal of the Acoustical Society of America, 1993, 94(2): 1136-1145.
[8] 詹天翼, 蒋佳荔, 彭辉, 等. 水分吸着过程中杉木黏弹行为的经时变化规律及其频率依存性[J]. 林业科学, 2016, 52(8): 96-103.
ZHAN T Y, JIANG J L, PENG H, et al. Changes of time dependent viscoelasticity of Chinese fir and its frequency-dependency during moisture adsorption processes[J]. Scientia Silvae Sinicae, 2016, 52(8): 96-103.
[9] ZHAN T Y, LU J X, JIANG J L, et al. Viscoelastic properties of the Chinese fir(Cunninghamia lanceolata)during moisture sorption processes determined by harmonic tests[J]. Materials, 2016, 9(12): 1020.
[10] 鲍甫成, 侯祝强. 针叶树材纵向气体渗透的三维流阻网络[J]. 林业科学, 2002, 38(4): 111-116.
BAO F C, HOU Z Q. The three-dimensional flow-resistor network for longitudinal gas permeability of softwoods[J]. Scientia Silvae Sinicae, 2002, 38(4): 111-116.
[11] 陈文炯, 刘书田. 多孔材料吸声性能分析与设计优化[J]. 噪声与振动控制, 2012, 32(3): 177-182.
CHEN W J, LIU S T. Analysis and design optimization of porous materials for sound absorption[J]. Noise and Vibration Control, 2012, 32(3): 177-182.
[12] 卢晓宁, 王志强, 杜以诚, 等. 速生杨木单板面内剪切模量预测模型[J]. 南京林业大学学报(自然科学版), 2006, 30(1): 93-94.
LU X N, WANG Z Q, DU Y C, et al. The prediction of in-plane shearing modulus of poplar veneer[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2006, 30(1): 93-94.
[13] 卢晓宁, 黄河浪, 杜以诚. 速生杨木单板横纹弹性模量预测模型[J]. 南京林业大学学报(自然科学版), 2003, 27(2): 21-24.
LU X N, HUANG H L, DU Y C. The prediction of elastic modulus in tangential direction of poplar veneer[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2003, 27(2): 21-24.
[14] 卢晓宁, 陈宇聪, 陈颖. 速生杨木单板顺纹弹性模量预测模型[J]. 南京林业大学学报(自然科学版), 2002, 26(3): 9-13.
LU X N, CHEN Y C, CHEN Y. The prediction of elastic modulus along the grain of poplar veneer[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2002, 26(3): 9-13.
[15] 王志强, 卢晓宁, 陈虞平. 经典层合板刚度模型在胶合板中的应用[J]. 南京林业大学学报(自然科学版), 2007, 31(3): 8-12.
WANG Z Q, LU X N, CHEN Y P. Application of stiffness models of classical laminate plate theory in plywood[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 31(3): 8-12.
[16] 孙卫青, 邱宗玺, 张恒. 层合复合材料隔声性能有限元分析[J]. 郑州大学学报(理学版), 2002,31(1): 51-54.
SUN W Q, QIU Z X, ZHANG H. Analysis of sound insulation in multilayer composites with finite element method[J]. Journal of Zhengzhou University(Natural Science Edition), 2002, 31(1): 51-54.
[17] WANG X Z, LI Y J, DENG Y H, et al. Contributions of basic chemical components to the mechanical behaviour of wood fiber cell walls as evaluated by nanoindentation[J]. BioResources, 2016, 11(3): 6026-6039.

备注/Memo

备注/Memo:
收稿日期:2017-09-28 修回日期:2017-12-15
基金项目:国家重点研发计划(2017YFC0703501)。
作者简介:鞠泽辉,男,研究方向为木材科学与技术。林杨帆为并列第一作者。通信作者:卢晓宁,男,教授。E-mail:luxiaoning-nfu@126.com
更新日期/Last Update: 2018-05-15