[1]杨秀树,吴华平,NAYEBARE Kakwara Prosper,等.交联壳聚糖/聚乙烯醇的制备及其在竹材中的构建[J].林业工程学报,2018,3(03):57-62.[doi:10.13360/j.Issn.2096-1359.2018.03.010]
 YANG Xiushu,WU Huaping,NAYEBARE Kakwara Prosper,et al.Preparation of crosslinked chitosan/poly(vinyl alcohol) and its construction in bamboo[J].Journal of Forestry Engineering,2018,3(03):57-62.[doi:10.13360/j.Issn.2096-1359.2018.03.010]





Preparation of crosslinked chitosan/poly(vinyl alcohol) and its construction in bamboo
杨秀树吴华平NAYEBARE Kakwara Prosper饶瑾张艳*孙芳利*
浙江农林大学工程学院,浙江 临安 311300
YANG Xiushu WU Huaping NAYEBARE Kakwara Prosper RAO Jin ZHANG Yan* SUN Fangli*
School of Engineering, Zhejiang A & F University, Lin'an 311300, Zhejiang, China
壳聚糖 聚乙烯醇 交联 干缩湿胀 防霉防腐
chitosan poly(vinyl alcohol) crosslink shrinkage and swelling mold and decay resistance
S781.72; TQ351.3
以戊二醛为交联剂制备壳聚糖/聚乙烯醇互穿聚合物,并对其溶胀性进行表征。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和傅里叶变换红外光谱(FT-IR)研究聚合物的微观形貌和化学结构特征。将戊二醛、壳聚糖及聚乙烯醇混合后通过真空浸渍的方式注入竹材中并发生交联反应,测试处理材的干缩湿胀和防霉防腐性能。结果表明:壳聚糖可均匀分散在聚乙烯醇中,成膜均匀,两者相容性较好; 处理材在浸水-干燥3次循环下干缩率为6.9%~7.4%,在吸湿-干燥3次循环下的干缩率为1.4%~1.5%,吸水和吸湿抗胀率最高达34.5%; 壳聚糖/聚乙烯醇互穿聚合物在竹材中的构建提高了竹材的防霉和防腐效果。未处理材在试验开始后霉菌便迅速长满,处理材霉菌孢子萌发推迟,生长缓慢,处理后竹材经褐腐菌密粘褶菌和白腐菌彩绒革盖菌侵染后的质量损失率为10.0%和5.4%,与未处理材相比分别减少了8.0%和8.1%。竹材内原位构建壳聚糖/聚乙烯醇聚合物网络,既能够提高竹材的尺寸稳定性,又增加了竹材的防霉和防腐性能,同时为解决竹材尺寸稳定性差和易霉变腐朽问题提供新途径。
The interpenetrating polymer of chitosan and poly(vinyl alcohol)crosslinked by the glutaraldehyde(GA)was prepared, and the swelling properties were evaluated. Morphological and chemical structures of the polymers were investigated by the scanning electron microscopy(SEM), transmission electron microscopy(TEM)and Fourier transform infrared spectroscopy(FT-IR), respectively. The formulation of the polymer was composed of glutaraldehyde, chitosan and poly(vinyl alcohol), which was injected into bamboo by using the vacuum impregnation method and followed by a crosslinking reaction under a proper temperature. The shrinkage and swelling, mold and decay resistance of the treated material were investigated. Results are presented as follows: the chitosan can be evenly dispersed in the poly(vinyl alcohol), forming a uniform polymer film, indicating that the chitosan and poly(vinyl alcohol)have good compatibility in the crosslinked system; shrinkage values of the treated bamboo were in the range of 6.9%-7.4% under water-dry cycles and 1.4%-1.5% under moisture-dry cycles, with an anti-swelling efficiency of 34.5%; the construction of the glutaraldehyde crosslinked chitosan/poly(vinyl alcohol)interpenetrating polymer can improve the mold and decay resistance of bamboo. The untreated bamboo was quickly covered with mold at the beginning of the experiment, while the spores germinated and developed slowly on the treated bamboo. In addition, the treated bamboo resisted Gloeophyllun trabeum and Trametes versicolor effectively. The mass losses of the treated bamboo were 10.0% and 5.4%, respectively, which decreased by 8.0% and 8.1% compared with the untreated controls. The in-situ construction of the chitosan/poly(vinyl alcohol)polymer network in the bamboo not only increased the dimensional stability of bamboo, but also prevented bamboo from decay and mold, which provided a novel method for simultaneously solving the problems of dimensional instability and fungi attacking. Further research in this field will be focused on prolonging the service life of bamboo, as well as widening the application of bamboo and related products, thus accelerating the development pace of bamboo industry.


[1] CHENG D, JIANG S, ZHANG Q. Effect of hydrothermal treatment with different aqueous solutions on the mold resistance of moso bamboo with chemical and FTIR analysis[J]. BioResources, 2013, 8(1): 371-382.
[2] DUA P, SATYA S, PANT K K, et al. Eco-friendly preservation of bamboo species: traditional to modern techniques[J]. BioResources, 2016, 11(4): 10604-10624.
[3] HAN J, LUO D. Valuation on mildew-proof results of ACQ-B to bamboo[J]. Advanced Materials Research, 2012, 580: 517-520.
[4] 邹怡佳, 陈玉和, 吴再兴, 等. 竹材防开裂研究进展[J]. 浙江林业科技, 2016, 32(5): 85-88.
ZOU Y J, CHEN Y H, WU Z X, et al. Advance of research on bamboo cracking prevention[J]. Journal of Zhejiang Forestry Science and Technology, 2016, 32(5): 85-88.
[5] QIN C L, CAI W M, CAI J, et al. Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network[J]. Materials Chemistry & Physics, 2004, 85(2): 402-409.
[6] 孙锦秀, 杨翠云, 谢金润, 等. 黄酮类分子印迹互穿聚合物网络水凝胶的制备及性能研究[J]. 实用药物与临床, 2016, 19(6): 743-745.
SUN J X, YANG C Y, XIE J R, et al. Preparation and properties of interpenetrating polymer network hydrogels for molecularly imprinting of flavonoids[J]. Practical Pharmacy and Clinical Remedies, 2016, 19(6): 743-745.
[7] BERNKOP-SCHNÜRCHA, HORNOF M, GUGGI D. Thiolated chitosans[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57(1): 9-17.
[8] ARVANITOYANNIS I S, NAKAYAMA A, AIBA S. Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties[J]. Carbohydrate Polymers, 1998, 37(4): 371-382.
[9] WANG Q, FU Y, YAN X, et al. Preparation and characterization of underwater superoleophobic chitosan/poly(vinyl alcohol)coatings for self-cleaning and oil/water separation[J]. Applied Surface Science, 2017, 412: 10-18.
[10] HU H, XIN J H, HU H, et al. Glutaraldehyde-chitosan and poly(vinyl alcohol)blends, and fluorescence of their nano-silica composite films[J]. Carbohydrate Polymers, 2013, 91(1): 305-313.
[11] 刘彬彬,孙芳利,吴华平,等. 载药聚丙烯酸/聚乙二醇半互穿聚合物网络在木材中的原位构建及其性能[J]. 林业科学,2016,52(11): 134-141.
LIU B B, SUN F L, WU H P, et al. Construction of drug-loaded polyacrylate/polyethyleneglycol semi-interpenetrating network structure in wood and its performances[J]. Scientia Silvae Sinicae, 2016, 52(11): 134-141.
[12] YU Q, SONG Y, SHI X, et al. Preparation and properties of chitosan derivative/poly(vinyl alcohol)blend film crosslinked with glutaraldehyde[J]. Carbohydrate Polymers, 2011, 84(1): 465-470.
[13] CHUANG W Y, YOUNG T H, YAO C H, et al. Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro[J]. Biomaterials, 1999, 20(16): 1479-1487.
[14] 刘艳, 俞丹红, 李维亚, 等. 壳聚糖/聚乙烯醇共混膜在织物化学镀中的应用[J]. 应用化学, 2015, 32(2): 200-206.
LIU Y, YU D H, LI W Y, et al. Application of chitosan/polyvinyl alcohol complex film in fabrics' electroless plating[J]. Chinese Journal of Applied Chemistry, 2015, 32(2): 200-206.
[15] PEARSON F G, MARCHESSAULT R H, LIANG C Y. Infrared spectra of crystalline polysacchrides. V. Chitin[J]. Journal of Polymer Science, 1960, 43(141): 101-116.
[16] 顾蓉, 郭康权, 漆楚生, 等. 魔芋粉-壳聚糖-聚乙烯醇共混胶黏剂的性能及其胶合机理[J]. 农业工程学报, 2010, 26(5): 373-378.
GU R, GUO K Q, QI C S, et al. Structural characterization of konjak powder-chitosan-PVA blending adhesive[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(5): 373-378.


 YU Shengfei,XIAO Yi,WANG Gengen,et al.Preparation of fly ash/chitosan composites and its application in the wastewater of wood dyeing[J].Journal of Forestry Engineering,2016,1(03):29.[doi:10.13360/j.issn.2096-1359.2016.06.005]
 HAN Jingquan,DING Qinqin,BAO Yaqian,et al.Synthesis and characterization of nanocellulose reinforced conductive hydrogel[J].Journal of Forestry Engineering,2017,2(03):84.[doi:10.13360/j.issn.2096-1359.2017.01.015]


收稿日期:2017-08-05 修回日期:2017-11-01
基金项目:国家自然科学基金(31470587); 浙江省自然科学基金重点项目(Z14C160009); 浙江省自然科学基金(LY18C160001)。
作者简介:杨秀树,女,研究方向为木材化学改性与保护。通信作者:张艳,女,副教授,E-mail:zhangy@iccas.ac.cn; 孙芳利,女,教授,E-mail:sun-fangli@163.com
更新日期/Last Update: 2018-05-15