[1]赵国敏,潘明珠*.纤维素纳米晶体/SiO2纳米复合胶体对水性丙烯酸涂料性能的影响[J].林业工程学报,2018,3(03):81-87.[doi:10.13360/j.Issn.2096-1359.2018.03.014]
 ZHAO Guomin,PAN Mingzhu*.Effects of CNC/SiO2 composite colloid on properties of waterborne poly acrylic acid coatings[J].Journal of Forestry Engineering,2018,3(03):81-87.[doi:10.13360/j.Issn.2096-1359.2018.03.014]
点击复制

纤维素纳米晶体/SiO2纳米复合胶体对水性丙烯酸涂料性能的影响()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
3
期数:
2018年03期
页码:
81-87
栏目:
生物质能源与材料
出版日期:
2018-05-15

文章信息/Info

Title:
Effects of CNC/SiO2 composite colloid on properties of waterborne poly acrylic acid coatings
文章编号:
2096-1359(2018)03-0081-07
作者:
赵国敏潘明珠*
南京林业大学材料科学与工程学院,南京 210037
Author(s):
ZHAO Guomin PAN Mingzhu*
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
水性丙烯酸涂料 纤维素纳米晶体 纳米SiO2 耐磨性 界面性能
Keywords:
waterborne poly acrylic acid coatings cellulose nanocrystal nano-SiO2 abrasion resistance interfacial properties
分类号:
TQ630
DOI:
10.13360/j.Issn.2096-1359.2018.03.014
文献标志码:
A
摘要:
为改善纳米SiO2在水性聚丙烯酸(poly acrylic acid,PAA)涂料中的分散性,以纤维素纳米晶体(cellulose nanocrystal, CNC)为模板,正硅酸乙酯为硅源,通过溶胶凝胶法在CNC表面原位聚合形成纳米SiO2,制备CNC/SiO2复合胶体,并以复合胶体改性水性PAA涂料,探讨了CNC、纳米SiO2以及CNC/SiO2复合胶体对水性PAA涂料的影响规律。结果表明,以CNC为模板负载SiO2制备得到的CNC/SiO2复合胶体加入水性PAA涂料中可以有效提高SiO2在PAA涂料中的分散性,改善了SiO2与PAA的界面相容性。经CNC/SiO2复合胶体改性后,PAA涂料中形成了氢键和微量的酯基。相比CNC和SiO2,CNC/SiO2复合胶体改善了水性PAA涂料的物理力学性能。当CNC/SiO2复合胶体添加量为5%时,PAA涂料的硬度由H增大到6H,附着力由四级提高到一级,黏度由979.3 mPa·s减小到480.8 mPa·s,表干时间由60 min延长至130 min。
Abstract:
Waterborne poly acrylic acid(PAA)coating is a waterborne environment-friendly coating and has been widely used in wooden furniture finishing, glass coating and automotive finishing because of its excellent corrosion resistance, weathering resistance and good film-forming properties. However, the waterborne PAA film is easy to be abraded, which not only reduces the gloss but also brings a sense of insecurity during the application. The main modification method to improve the abrasion resistance of waterborne PAA coating is the physical blending with inorganic nanoparticles, such as nano-SiO2. However, nano-SiO2 is aggregated easily, resulting in reduced compatibility with the waterborne PAA coating. In order to improve the dispersion of nano-SiO2 in waterborne PAA coatings, the cellulose nanocrystal(CNC)/SiO2 composite colloid was prepared by the sol-gel method. In this method, the CNC was used as the template, ethyl orthosilicate was utilized as the silicon source, and nano-SiO2 was synthesized in situ polymerization on the surface of the CNC. Then, the CNC/SiO2 composite colloid was used to modify waterborne PAA coatings. The effects of the CNC, nano-SiO2 and CNC/SiO2 composite colloid on the modification of waterborne PAA coatings were investigated. The results showed that the dispersion of nano-SiO2 in PAA coatings, and the interface compatibility between SiO2 and PAA were improved by adding the CNC/SiO2 composite colloid prepared by the CNC template. After the addition of CNC/SiO2 composite colloid, the hydrogen bonding and a small amount of ester were formed in CNC/SiO2/PAA modified coatings. Compared with the CNC and SiO2, the CNC/SiO2 composite colloid improved the physical and mechanical properties of waterborne PAA coatings. When the addition of CNC/SiO2 composite colloid was 5%, the hardness and adhesion of the PAA coatings increased to 6H and the first level quality, respectively. The viscosity of the PAA coatings reduced from 979.3 mPa·s to 480.8 mPa·s, and the surface drying time increased from 60 min to 130 min.

参考文献/References:

[1] 陈永军, 候发秋, 卿宁. 丙烯酸酯涂料改性研究进展[J]. 材料导报, 2013, 27(21): 236-240.
CHEN Y J, HOU F Q, QING N. Developmental trend of modifying acrylate coating[J]. Materials Review, 2013, 27(21): 236-240.
[2] CHEN Q, YU H J, WANG L, et al. Synthesis and characterization of amylose grafted poly(acrylic acid)and its application in ammonia adsorption[J]. Carbohydrate Polymers, 2016, 153: 429-434.
[3] 张洪彬, 王锋, 胡剑青, 等. 水性涂料改性研究进展[J]. 热固性树脂, 2010, 25(6): 53-57.
ZHANG H B, WANG F, HU J Q, et al. Research progress in modification of waterborne coatings[J]. Thermosetting Resin, 2010, 25(6): 53-57.
[4] 陆正全, 杨建军, 张建安, 等. 水性丙烯酸酯涂料在建筑领域的应用及研究进展[J]. 涂料技术与文摘, 2014, 35(9): 32-36.
LU Z Q, YANG J J, ZHANG J A, et al. Application of waterborne acrylate coatings in construction[J]. Coatings Technology & Abstracts, 2014, 35(9): 32-36.
[5] STEFAN V, GERHARD G, STEFAN P, et al. Improving the mechanical resistance of waterborne wood coatings by adding cellulose nanofibres[J]. Reactive and Functional Polymers, 2014, 85: 214-220.
[6] 顾敏豪, 丁道宁, 郑先创, 等. 纳米二氧化硅-丙烯酸树脂复合涂料的研制[J]. 南京林业大学学报(自然科学版), 2009, 45(2): 286-291.
GU M H, DING D N, ZHENG X C, et al. The synthesis of silica-polyacrylate nano-complex coating[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2009, 45(2): 286-291.
[7] 王训遒, 蒋登高, 周铭, 等. 纳米CaCO3在丙烯酸树脂中的分散及其复合涂料的制备[J]. 化工进展, 2005, 24(4): 391-394.
WANG X Q, JIANG D G, ZHOU M, et al. Dispersion of nanometer calcium carbonate in acrylic resin and preparation of its composite coating[J]. Chemical Industry and Engineering Progress, 2005, 24(4): 391-394.
[8] 权利军, 安秋凤, 荆晶晶. 纳米SiO2杂化氟硅丙烯酸树脂的合成及应用[J]. 涂料工业, 2016, 46(1): 8-12.
QUAN L J, AN Q F, JING J J. Synthesis of nano SiO2 hybrid fluorine silicon acrylic resin and its application[J]. Paint & Coatings Industry, 2016, 46(1): 8-12.
[9] 倪士宝, 王政, 聂王焰, 等. 丙烯酸酯/纳米SiO2复合细乳液的制备与表征[J]. 材料工程, 2012(9): 66-69.
NI S B, WANG Z, NIE W Y, et al. Preparation and characterization of acrylate/nanosilica composite miniemulsion[J]. Journal of Materials Engineering, 2012(9): 66-69.
[10] 王国建. 有机硅改性弹性乳液外墙防水涂料的研制[J]. 化学建材, 2000(6): 31-35.
WANG G J. Development of exterior wall waterproof coating based on siloxane modified elastic acrylic emulsion[J]. Chemical Building Materials, 2000(6): 31-35.
[11] 张书弟, 杨国生, 张发余. 纳米二氧化硅在外墙涂料中的改性研究[J]. 电镀与涂饰, 2009, 28(5): 57-59.
ZHANG S D, YANG G S, ZHANG F Y. Study on modification of exterior wall coating by nano-SiO2[J]. Electroplating & Finishing, 2009, 28(5): 57-59.
[12] HON M N, LEE T S, TEE T T, et al. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers[J]. Composites Part B: Engineering, 2015, 75: 176-200.
[13] TEN E, BAHR D F, LI B, et al. Effects of cellulose nanowhiskers on mechanical, dielectric, and rheological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites[J]. Industrial & Engineering Chemistry Research, 2012, 51(7): 2941-2951.
[14] XU X Z, WANG H R, JIANG L, et al. Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide)nanofibers and their novel shish-kebab-like crystalline structures[J]. Macromolecules, 2014, 47(10): 3409-3416.
[15] 刘桦, 罗丙红, 陈睿鹏, 等. 纳米纤维素晶须增强增韧聚(L-乳酸)复合材料的制备与表征[J]. 复合材料学报, 2015, 32(6): 1703-1712.
LIU H, LUO B H, CHEN R P, et al. Preparation and characterization of nano cellulose whiskers reinforced and toughened poly(L-lactic acid)based composites[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1703-1712.
[16] 张仁华, 张蕤, 黎航, 等. 纳米纤维素晶须增强生物聚酯P(3, 4)HB复合材料[J]. 林业工程学报, 2016, 1(3): 85-90.
ZHANG R H, ZHANG R, LI H, et al. Biopolyester P(3,4)HB-based nanocomposites reinforced by cellulose nanowhiskers[J]. Journal of Forestry Engineering, 2016, 1(3): 85-90.
[17] 李晶晶, 宋湛谦, 李大纲, 等. 棉花纳米纤维素增强木塑复合材料[J]. 高分子材料科学与工程, 2015, 31(3): 142-146.
LI J J, SONG Z Q, LI D G, et al. Wood plastic composites reinforced with cotton cellulose nanofibers[J]. Polymer Materials Science and Engineering, 2015, 31(3): 142-146.
[18] HIDEAKI M, MEGUMI N, TOSHIKI H, et al. Bacterial cellulose/silica hybrid fabricated by mimicking biocomposites[J]. Journal of Materials Science, 2006, 41(17): 5646-5656.
[19] SONG J L, FU G S, CHENG Q, et al. Bimodal mesoporous silica nanotubes fabricated by dual templates of CTAB and bare nanocrystalline cellulose[J]. Industrial & Engineering Chemistry Research, 2014, 53(2): 708-714.
[20] FENG T T, QIAO X W, WANG H N, et al. A sandwich-type electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of optimized ferrocene functionalized Fe3O4@SiO2 as labels[J]. Biosensors and Bioelectronics, 2016, 79: 48-54.
[21] LIU Z G, JI L T, DONG X L, et al. Preparation of Co-N-C supported on silica spheres with high catalytic performance for ethylbenzene oxidation[J]. RSC Advances, 2014, 5(9): 6259-6264.
[22] HU Y X, HE L, YIN Y D. Charge stabilization of superparamagnetic colloids for high-performance responsive photonic structures[J]. Small, 2012, 8(24): 3795-3799.
[23] SHAO M F, NING F Y, ZHAO J W, et al. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins[J]. Journal of the American Chemical Society, 2012, 134(2): 1071-1077.
[24] LU P, HSIEH Y L. Cellulose nanocrystal-filled poly(acrylic acid)nanocomposite fibrous membranes[J]. Nanotechnology, 2009, 20(41): 415604.
[25] PU Y Q, ZHANG J G, ELDER T, et al. Investigation into nanocellulosics versus acacia reinforced acrylic films[J]. Composites Part B: Engineering, 2007, 38(3): 360-366.
[26] PAN M Z, ZHOU X Y, CHEN M Z. Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization[J]. BioResources, 2013, 8(1): 933-943.
[27] SHOPSOWITZ K E, QI H, HAMAD W Y, et al. Free-standing mesoporous silica films with tunable chiral nematic structures[J]. Nature, 2010, 468(7322): 422-425.
[28] ESMAEILNEJAD-AHRANJANI P, KAZEMEINI M, SINGH G, et al. Study of molecular conformation and activity-related properties of lipase immobilized onto core-shell structured polyacrylic acid-coated magnetic silica nanocomposite particles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2016, 32(13): 3242-3252.
[29] SYED J A, LU H B, TANG S C, et al. Enhanced corrosion protective PANI-PAA/PEI multilayer composite coatings for 316SS by spin coating technique[J]. Applied Surface Science, 2015, 325: 160-169.
[30] HE Y H, LI H B. Double-layer modification of water-based aluminum with SiO2 and polyacrylic acid by sol-gel process and in situ polymerization[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2016, 31(2): 231-235.
[31] WANG P C, HU Y J, ZHAN H Q, et al. Vibrational spectroscopy of the mass-selected tetrahydrofurfuryl alcohol monomers and its dimers in gas phase using IR depletion and VUV single photon ionization[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 185: 63-68.
[32] 张丽萍, 张其滨. 涂料粘度的测量及对施工性能的影响[J]. 涂料涂装与电镀, 2004, 2(2): 44-47.
ZHANG L P, ZHANG Q B. The measurement of coating's viscosity and its influence on application performance[J]. Coatings Painting & Electroplating, 2004, 2(2): 44-47.

相似文献/References:

[1]曹坤丽,吴燕*,于成宁,等.纤维素纳米晶体/KH560对UV固化水性 木器涂层性能的影响[J].林业工程学报,2016,1(02):135.[doi:10.13360/j.issn.2096-1359.2016.02.024]
 CAO Kunli,WU Yan*,YU Chengning,et al.The influence of CNC and KH560 on the properties of waterborne UV-curable wood coatings[J].Journal of Forestry Engineering,2016,1(03):135.[doi:10.13360/j.issn.2096-1359.2016.02.024]
[2]王金茹,倪晓慧,程万里,等.CNCs增强PCL复合纤维支架的静电纺丝制备及其性能表征[J].林业工程学报,2018,3(01):83.[doi:10.13360/j.issn.2096-1359.2018.01.014]
 WANG Jinru,NI Xiaohui,CHENG Wanli,et al.Fabrication and characterization of electro-spun composite fibrous scaffolds for tissue engineering by CNCs-reinforced PCL[J].Journal of Forestry Engineering,2018,3(03):83.[doi:10.13360/j.issn.2096-1359.2018.01.014]

备注/Memo

备注/Memo:
收稿日期:2017-06-16 修回日期:2017-08-03
基金项目:国家自然科学基金(31670556); 南京林业大学杰出青年项目(NLJQ2015-02)。
作者简介:赵国敏,女,研究方向为生物质复合材料。通信作者:潘明珠,女,教授。E-mail: mzpan@njfu.edu.cn
更新日期/Last Update: 2018-05-15