[1]李宗飞,茹煜*,陈京元,等.农用固定翼飞机的喷头喷雾特性[J].林业工程学报,2018,3(03):111-116.[doi:10.13360/j.Issn.2096-1359.2018.03.018]
 LI Zongfei,RU Yu*,CHEN Jingyuan,et al.Atomizing characteristics of nozzle based on fixed wing agricultural aircraft[J].Journal of Forestry Engineering,2018,3(03):111-116.[doi:10.13360/j.Issn.2096-1359.2018.03.018]
点击复制

农用固定翼飞机的喷头喷雾特性()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
3
期数:
2018年03期
页码:
111-116
栏目:
装备与信息化
出版日期:
2018-05-15

文章信息/Info

Title:
Atomizing characteristics of nozzle based on fixed wing agricultural aircraft
文章编号:
2096-1359(2018)03-0111-06
作者:
李宗飞1茹煜1*陈京元2周宏平1查玉平2陆枫1
1.南京林业大学机械电子工程学院,南京 210037;
2.湖北省林业科学研究院森林保护研究所,武汉 430075
Author(s):
LI Zongfei1RU Yu1*CHEN Jingyuan2ZHOU Hongping1ZHA Yuping2LU Feng1
1.College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China;
2.Hubei Forestry Science Research Institute, Forest Protection Institute, Wuhan 430075, China
关键词:
航空喷雾 航空喷头 雾滴粒径分布 风洞
Keywords:
aerial spray aerial nozzle droplet size distribution wind tunnel
分类号:
S252
DOI:
10.13360/j.Issn.2096-1359.2018.03.018
文献标志码:
A
摘要:
为获得航空AT系列固定翼飞机常用喷头的雾滴粒径分布情况,选取了CP-03喷头并对其进行了风洞和飞行条件2种情况下的雾滴粒径分布测试。试验中收集水敏纸,试验结束后利用扫描仪扫描,再导入iDAS PRO雾滴沉积分析软件进行雾滴粒径分布情况、雾滴覆盖率及回收率情况分析。试验结果表明,在喷头型号一定的情况下,随着出口风速的增大,雾滴粒径呈递减趋势。当出口风速分别为51.5,60.7和70.4 m/s时,1#孔+A的雾滴粒径最大,分别为374.4,297.1和229.6 μm,同时,喷头的结构(孔径和喷雾面的导流角)也对雾滴粒径有直接的影响。该研究为航空喷头的作业参数提供了依据,在实际作业时,需要根据作业对象和防治要求合理匹配喷头结构、作业飞行速度、飞行高度参数,从而达到最佳作业效果。
Abstract:
In order to obtain the droplet size distribution of commonly used nozzle of aerosol AT series fixed-wing aircraft, we selected the CP-03 nozzle and tested the droplet particle size distribution under wind tunnel and flight conditions. The droplets were collected with an uniformly distributed water-sensitive paper and analyzed by using iDAS PRO droplet deposition analysis software. In order to make the test results more credible, the water-sensitive paper was evenly distributed. In addition, the influences of external factors on the test results were also considered during the experiment. The results showed that in the case of a certain type of nozzle, the droplet size tended to decrease with the increase of export wind speed. When the outlet wind at a speed of 50.7 m/s, 51.5 m/s and 70.4 m/s, respectively, the diameter of droplet particle sprayed by 1#+A hole was the largest, which was 374.4 μm, 297.1 μm and 229.6 μm, respectively. In the case of the same pore size, the sprayed surface with a diversion angle of 30° had the largest droplet size, while the droplet size of the sprayed surface with the diversion angle of 90° was the smallest. Under the wind tunnel and flight condition, the S value(relative particle width)were 1.2-1.6 and 0.4-0.7, respectively, so the distribution of droplet was more uniform under the flight condition. Furthermore, the structure of the nozzle(aperture and the diversion angle of spray surface)also had a direct impact on the droplet size. The results of this study could provide the basis for determining the operational parameters of the aerial nozzle. In the actual operation, the nozzle structure, operation flight speed and flight height parameters should be reasonably matched according to the object of operation and the requirements of control to achieve the best operation effect.

参考文献/References:

[1] RU Y, ZHOU H P, SHU C R. Deposition evaluation of aerial electrostatic spraying system assembled in fixed-wing[J]. Applied Engineering in Agriculture, 2014, 30(5): 751-757.
[2] 张慧春,周宏平,郑加强,等. 喷头雾化性能及雾滴沉积可视化模型研究[J]. 林业工程学报,2016,1(3):91-96.
ZHANG H C,ZHOU H P,ZHENG J Q, et al. A study of spray nozzle atomization performance and droplet deposition visual model[J]. Journal of Forestry Engineering, 2016, 1(3): 91-96.
[3] NUYTTENS D, BAETENS K, SCHAMPHELEIRE M D, et al. Effect of nozzle type, size and pressure on spray droplet characteristics[J]. Biosystems Engineering, 2007, 97(3): 333-345.
[4] FRITZ B K, HOFFMANN W C, BAGLEY W E. Effects of spray mixtures on droplet size under aerial application conditions and implication on drift[J]. Applied Engineering in Agriculture, 2010, 26(1): 21-29.
[5] NUYTTENS D, TAYLOR W A, SCHAMPHELEIRE M D, et al. Influence of nozzle type and size on drift potential by means of different wind tunnel evaluation methods[J]. Biosystems Engineering, 2009, 103(3): 271-280.
[6] FRITZ B K, HOFFMANN W C. Update to the USDA-ARS fixed-wing spray nozzle models[J]. Transactions of the ASABE, 2015, 58(2): 281-295.
[7] HEWITT A J. Droplet size spectra classification categories in aerial application scenarios[J]. Crop Protection, 2008, 27(9): 1284-1288.
[8] FRITZ B K, HOFFMANN W C, LAN Y B. Evaluation of the EPA drift reduction technology(DRT)low-speed wind tunnel protocol[J]. Journal of ASTM International, 2009, 6(4): 183-191.
[9] 张慧春,DORR G,郑加强,等. 扇形喷头雾滴粒径分布风洞试验[J]. 农业机械学报,2012,43(6):53-57.
ZHANG H C, DORR G, ZHENG J Q, et al. Wind tunnel experiment of influence on droplet size distribution of flat fan fozzles[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6): 53-57.
[10] MARTIN D E, CARLTON J B. Airspeed and orifice size affect spray droplet spectrum from an aerial electrostatic nozzle for fixed-wing applications[J]. Atomization and Sprays, 2012, 22(12): 997-1010.
[11] de ALVARENGA C B, TEIXEIRA M M, ZOLNIER S, et al. Efficiency of the spray tip using hydraulic hollow cone from the spectral analysis of the droplets[J]. Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias, 2013, 5(3):41-50.
[12] 茹煜,朱传银,包瑞,等. 航空植保作业用喷头在风洞和飞行条件下的雾滴粒径分布[J]. 农业工程学报,2016, 32(20): 94-98.
RU Y, ZHU C Y, BAO R, et al. Droplet size distribution of aerial nozzle for plant protection in wind tunnel and flight conditions[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(20): 94-98.
[13] 茹煜,周宏平,贾志成,等. 航空静电喷雾系统的设计及应用[J]. 南京林业大学学报(自然科学版),2011,35(1):91-94.
RU Y, ZHOU H P, JIA Z C, et al. Design and application of electrostatic spraying system[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(1): 91-94.
[14] 茹煜,朱传银,包瑞. 风洞条件下雾滴飘移模型与其影响因素分析[J]. 农业机械学报, 2014, 45(10): 66-72.
RU Y, ZHU C Y, BAO R. Spray drift model of droplets and analysis of influencing factors based on wind tunnel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 66-72.
[15] 祁力钧,胡开群,莽璐,等. 基于图像处理的雾滴检测技术[J]. 农业机械学报,2009,40(增刊): 48-51.
QI L J, HU K Q, MANG L, et al. Droplet detection based on image processing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(Sup. 1): 48-51.
[16] 吕晓兰,傅锡敏,吴萍,等. 喷雾技术参数对雾滴沉积分布影响试验[J]. 农业机械学报,2011,42(6): 70-75.
LYU X L, FU X M, WU P, et al. Influence of spray operating parameters on droplet deposition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6): 70-75.
[17] 宋吉林,祁力钧,孙小华,等. 喷雾机雾滴大小和飞行时间的研究[J]. 农业机械学报,2007,38(4): 54-57.
SONG J L, QI L J,SUN X H,et al. Study on flying time and distributing characteristic of droplet from sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery,2007,38(4): 54-57.

备注/Memo

备注/Memo:
收稿日期:2017-06-07 修回日期:2017-09-30
基金项目:林业公益性行业科研专项(201404409); 江苏省研究生实践创新计划(SJCX17_0260); 江苏省六大高峰人才项目(NY-065); 林业科技成果国家级推广项目(2016-40); 江苏高校优势学科建设工程资助项目(PAPD)。
作者简介:李宗飞,男,研究方向为航空植保。通信作者:茹煜,女,教授。E-mail:superchry@163.com
更新日期/Last Update: 2018-05-15