[1]周军文,黄东升*,黄子睿,等.竹框架装配式梁柱节点单调加载试验[J].林业工程学报,2018,3(03):122-127.[doi:10.13360/j.Issn.2096-1359.2018.03.020]
 ZHOU Junwen,HUANG Dongsheng*,HUANG Zirui,et al.Experimental behavior of fabricated beam-column connection of bamboo frame under monotonic loading[J].Journal of Forestry Engineering,2018,3(03):122-127.[doi:10.13360/j.Issn.2096-1359.2018.03.020]
点击复制

竹框架装配式梁柱节点单调加载试验()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
3
期数:
2018年03期
页码:
122-127
栏目:
森林工程与土建交通
出版日期:
2018-05-15

文章信息/Info

Title:
Experimental behavior of fabricated beam-column connection of bamboo frame under monotonic loading
文章编号:
2096-1359(2018)03-0122-06
作者:
周军文12黄东升1*黄子睿3沈玉蓉1
1.南京林业大学土木工程学院,南京 210037;
2.常州工学院土木建筑工程学院,常州 213032;
3.东南大学土木工程学院,南京 210096
Author(s):
ZHOU Junwen12 HUANG Dongsheng1* HUANG Zirui3 SHEN Yurong1
1.College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China;
2.School of Civil and Architecture Engineering, Changzhou Institute of Technology, Changzhou 213032, Jiangsu, China;
3.School of Civil Engineering, Southeast University, Nanjing 210037, China
关键词:
竹框架 装配式节点 单调加载 转动能力 承载力
Keywords:
fabricated bamboo frame fabricated connection monotonic loading rotation capacity bearing capacity
分类号:
TU398.6; TU317.1
DOI:
10.13360/j.Issn.2096-1359.2018.03.020
文献标志码:
A
摘要:
竹结构房屋是一种典型的装配式建筑,节点是整个结构中最重要的组成部分,也是最薄弱的部位,节点的破坏会导致整个结构的倒塌,为此设计了一种由竹质构件和钢结构部分组成的装配式框架节点,为了解新型装配式节点的力学性能,制作两组共4个足尺模型试件,进行单调加载试验,分别调查节点梁翼缘钢板及柱套钢板厚度对节点力学性能的影响,得到了每个节点的荷载-位移曲线和弯矩-转角曲线,4个节点的极限转角为0.095,0.097,0.080和0.079 rad,4个试件的极限承载力分别为12.10,16.60,11.70和14.63 kN,并在试验的基础上,给出了节点的弯矩-转角曲线方程,4个试件的第一刚度分别为283,396,241和622 kN·m/rad。结果表明,增加节点梁翼缘钢板厚度既可以提高承载力,又可以增加节点的转动能力; 增加柱套钢板的厚度可以提高节点的承载力和初始转动刚度。
Abstract:
As a natural and renewable resource, bamboo is capable of rapid growth that can avoid future deforestation of precious forests. Its capacity to absorb energy and the higher bending strength makes the bamboo an ideal material for seismic-resistant constructions. Thus, the bamboo is promising to be used as components of building materials. Since the bamboo structure is a typical fabricated building, the connection of building is most important part and the frailest location in the whole structure. The failure of connection often brings about the collapse of the whole building. Therefore, a new fabricated frame connection made from steel structural parts was designed to improve the mechanical performance. Among the structure connections, the beam and column components were the bamboo, and a new steel connector was applied to connect the two components of top column and bottom column, column and beam. The four full-scale specimens were divided into two groups, and used to investigate the effect of thickness of beam flange steel plate and column steel plate on the mechanical property of overall structure. The loading-displacement curve and moment-rotation curve of connection specimens were obtained, and the ultimate rotations of four specimens were 0.095, 0.097, 0.080 and 0.079 rad, respectively. The ultimate bearing capacities of the four beam-column connection specimens were 12.10, 16.60, 11.70 and 14.63 kN, respectively. The equation for the moment-rotation curve based on the tested results was developed in this study. The first stiffness of moment-rotation curve of the four specimens was 283, 396, 241 and 622 kN·m/rad. The tested results indicated that the increase in thickness of beam flange steel plate improved not only the bearing capacity, but also the rotation capacity of fabricated connection. The increase in thickness of the column steel plate also improved both bearing capacity and initial rotation stiffness. The tested result of the ultimate capacity of connection was higher than the oretical value from the Euler's formula.

参考文献/References:

[1] FANG D P, IWASAKI S, YU M H, et al. Ancient Chinese timber architecture. I: Experimental study[J]. Journal of Structural Engineering-ASCE, 2001, 127(11):1348-1357.
[2] KING W S, YEN J Y R, YEN Y N A. Joint characteristics of traditional Chinese wooden frames[J]. Engineering Structures, 1996, 18(8): 635-644.
[3] CHUN Q, YUE Z, PAN J W. Experimental study on seismic characteristics of typical mortise-tenon joints of Chinese southern traditional timber frame buildings[J]. Science China Technological Sciences, 2011, 54(9):2404-2411.
[4] CHANG W S, SHANKS J, KITAMORI A, et al. The structural behaviour of timber joints subjected to bi-axial bending[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(6): 739-757.
[5] SEO J M, CHOI I K, LEE J R. Static and cyclic behavior of wooden frames with tenon joints under lateral load[J]. Journal of Structural Engineering, 1999, 125(3): 344-349.
[6] 赵鸿铁, 董春盈, 薛建阳, 等. 古建筑木结构透榫节点特性试验分析[J]. 西安建筑科技大学学报(自然科学版), 2010, 42(3): 316-318.
ZHAO H T, DONG C Y, XUE J Y, et al. The experimental study on the characteristics of mortise-tenon joint historic timber buildings[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2010, 42(3): 316-318.
[7] 徐明刚, 邱洪兴. 古建筑木结构榫卯节点抗震试验研究[J]. 建筑科学, 2011, 27(7):56-58.
XU M G, QIU H X. Experimental study on seismic behavior of mortise-tenon joints of ancient architectures[J]. Building Structure, 2011, 27(7):56-58.
[8] LAM F, GEHLOFF M, CLOSEN M. Moment-resisting bolted timber connections[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2010, 163(4): 267-274.
[9] LAM F, SCHULTE-WREDE M, YAO C C, et al. Moment resistance of bolted timber connections with perpendicular to grain reinforcements[C]∥10th World Conference of Timber Engineering WCTE2008, Miyazaki, Japan, 2008.
[10] 王明谦, 宋晓滨, 顾祥林, 等. 胶合木梁柱螺栓-钢填板节点转动性能研究[J]. 建筑结构学报, 2014, 35(9):141-150.
WANG M Q, SONG X B, GU X L, et al. Study on rotational behavior of bolted glulam beam-to-column connections with slotted-in steel plates[J]. Journal of Building Structures, 2014, 35(9): 141-150.
[11] BOUCHAÏR A, RACHER P, BOCQUET J F. Analysis of dowelled timber to timber moment-resisting joints[J]. Materials and Structures, 2007, 40(10): 1127-1141.
[12] TSUCHIMOTO T. Effect of clearance on the mechanical properties of timber joint[C]∥Proceedings of Pacific Timber Engineering Conference, Rotorua, New Zealand, 1999. 1999, 2: 204-210.
[13] FRAGIACOMO M, BATCHELAR M. Timber frame moment joints with glued-in steel rods. Ⅰ: Design[J]. Journal of Structural Engineering, 2011, 138(6): 789-801.
[14] FRAGIACOMO M, BATCHELAR M. Timber frame moment joints with glued-in steel rods. Ⅱ: Experimental investigation of long-term performance[J]. Journal of Structural Engineering, 2011, 138(6): 802-811.
[15] 时境晶, 杨会峰. 重型木结构梁柱植筋节点的抗弯承载力研究[J]. 结构工程师, 2011, 27(4):67-72.
SHI J J, YANG H F. Ultimate flexural capacity of beam-column glued-in rods connections of heavy timber structures[J]. Structural Engineers, 2011, 27(4):67-72.
[16] TLUSTOCHOWICZ G, SERRANO E, STEIGER R. State of the art review on timber connections with glued-in steel rods[J]. Materials and Structures, 2011, 44(5): 997-1020.
[17] 孙训方, 方孝淑, 关来泰. 材料力学[M]. 北京:高等教育出版社, 2015.

备注/Memo

备注/Memo:
收稿日期:2017-08-02 修回日期:2017-12-25
基金项目:国家自然科学基金(51778299); 建设部科技项目(2014-K2-014); 江苏省普通高校研究生(博士)科研创新计划项目(CXZZ13_0539); 常州工学院科研项目(YN1615)。
作者简介:周军文,男,副教授,研究方向为现代竹、木结构。通信作者:黄东升,男,教授。E-mail:dshuang@njfu.edu.cn
更新日期/Last Update: 2018-05-15